sfepy.terms.terms_membrane module¶
-
class
sfepy.terms.terms_membrane.
TLMembraneTerm
(*args, **kwargs)[source]¶ Mooney-Rivlin membrane with plain stress assumption.
The membrane has a uniform initial thickness h_0 and obeys a hyperelastic material law with strain energy by Mooney-Rivlin: \Psi = a_1 (I_1 - 3) + a_2 (I_2 - 3).
Call signature: dw_tl_membrane (material_a1, material_a2, material_h0, virtual, state)
Arguments: - material_a1 : a_1
- material_a2 : a_2
- material_h0 : h_0
- virtual : \ul{v}
- state : \ul{u}
-
arg_shapes
= {'material_a1': '1, 1', 'material_a2': '1, 1', 'material_h0': '1, 1', 'state': 'D', 'virtual': ('D', 'state')}¶
-
arg_types
= ('material_a1', 'material_a2', 'material_h0', 'virtual', 'state')¶
-
static
function
(out, fun, *args)[source]¶ Notes
fun is either weak_function or eval_function according to evaluation mode.
-
geometries
= ['3_4', '3_8']¶
-
get_eval_shape
(a1, a2, h0, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
-
integration
= 'surface'¶
-
name
= 'dw_tl_membrane'¶
-
sfepy.terms.terms_membrane.
eval_membrane_mooney_rivlin
(a1, a2, mtx_c, c33, mode)[source]¶ Evaluate stress or tangent stiffness of the Mooney-Rivlin membrane.
[1] Baoguo Wu, Xingwen Du and Huifeng Tan: A three-dimensional FE nonlinear analysis of membranes, Computers & Structures 59 (1996), no. 4, 601–605.