42 #define ENVELOPE_ADJUSTMENT_OFFSET 2 43 #define NOISE_FLOOR_OFFSET 6.0f 77 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
79 #define SBR_INIT_VLC_STATIC(num, size) \ 80 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \ 81 sbr_tmp[num].sbr_bits , 1, 1, \ 82 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \ 85 #define SBR_VLC_ROW(name) \ 86 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) } 92 const void *sbr_codes, *sbr_bits;
93 const unsigned int table_size, elem_size;
119 for (n = 1; n < 320; n++)
124 for (n = 0; n < 320; n++)
143 sbr->
kx[0] = sbr->
kx[1];
164 return *(
const int16_t *)a - *(
const int16_t *)
b;
167 static inline int in_table_int16(
const int16_t *table,
int last_el, int16_t needle)
170 for (i = 0; i <= last_el; i++)
171 if (table[i] == needle)
181 static const float bands_warped[3] = { 1.32715174233856803909f,
182 1.18509277094158210129f,
183 1.11987160404675912501f };
184 const float lim_bands_per_octave_warped = bands_warped[sbr->
bs_limiter_bands - 1];
185 int16_t patch_borders[7];
188 patch_borders[0] = sbr->
kx[1];
195 memcpy(sbr->
f_tablelim + sbr->
n[0] + 1, patch_borders + 1,
196 (sbr->
num_patches - 1) *
sizeof(patch_borders[0]));
203 while (out < sbr->f_tablelim + sbr->
n_lim) {
204 if (*in >= *
out * lim_bands_per_octave_warped) {
206 }
else if (*in == *
out ||
246 if (bs_header_extra_1) {
260 if (bs_header_extra_2) {
280 int i,
min = array[0];
281 for (i = 1; i < nel; i++)
282 min =
FFMIN(array[i], min);
286 static void make_bands(int16_t* bands,
int start,
int stop,
int num_bands)
288 int k, previous, present;
291 base =
powf((
float)stop / start, 1.0f / num_bands);
295 for (k = 0; k < num_bands-1; k++) {
298 bands[k] = present - previous;
301 bands[num_bands-1] = stop - previous;
311 if (bs_xover_band >= n_master) {
313 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
324 unsigned int temp, max_qmf_subbands;
325 unsigned int start_min, stop_min;
327 const int8_t *sbr_offset_ptr;
356 case 44100:
case 48000:
case 64000:
359 case 88200:
case 96000:
case 128000:
case 176400:
case 192000:
364 "Unsupported sample rate for SBR: %d\n", sbr->
sample_rate);
371 sbr->
k[2] = stop_min;
375 sbr->
k[2] += stop_dk[k];
377 sbr->
k[2] = 2*sbr->
k[0];
379 sbr->
k[2] = 3*sbr->
k[0];
385 sbr->
k[2] =
FFMIN(64, sbr->
k[2]);
389 max_qmf_subbands = 48;
391 max_qmf_subbands = 35;
393 max_qmf_subbands = 32;
395 if (sbr->
k[2] - sbr->
k[0] > max_qmf_subbands) {
397 "Invalid bitstream, too many QMF subbands: %d\n", sbr->
k[2] - sbr->
k[0]);
405 sbr->
n_master = ((sbr->
k[2] - sbr->
k[0] + (dk&2)) >> dk) << 1;
409 for (k = 1; k <= sbr->
n_master; k++)
412 k2diff = sbr->
k[2] - sbr->
k[0] - sbr->
n_master * dk;
421 for (k = 1; k <= sbr->
n_master; k++)
426 int two_regions, num_bands_0;
427 int vdk0_max, vdk1_min;
430 if (49 * sbr->
k[2] > 110 * sbr->
k[0]) {
432 sbr->
k[1] = 2 * sbr->
k[0];
435 sbr->
k[1] = sbr->
k[2];
438 num_bands_0 =
lrintf(half_bands *
log2f(sbr->
k[1] / (
float)sbr->
k[0])) * 2;
440 if (num_bands_0 <= 0) {
450 vdk0_max = vk0[num_bands_0];
453 for (k = 1; k <= num_bands_0; k++) {
463 float invwarp = spectrum->
bs_alter_scale ? 0.76923076923076923077f
465 int num_bands_1 =
lrintf(half_bands * invwarp *
466 log2f(sbr->
k[2] / (
float)sbr->
k[1])) * 2;
472 if (vdk1_min < vdk0_max) {
475 change =
FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
477 vk1[num_bands_1] -= change;
483 for (k = 1; k <= num_bands_1; k++) {
491 sbr->
n_master = num_bands_0 + num_bands_1;
495 (num_bands_0 + 1) *
sizeof(sbr->
f_master[0]));
496 memcpy(&sbr->
f_master[num_bands_0 + 1], vk1 + 1,
497 num_bands_1 *
sizeof(sbr->
f_master[0]));
515 int usb = sbr->
kx[1];
520 if (goal_sb < sbr->kx[1] + sbr->
m[1]) {
521 for (k = 0; sbr->
f_master[k] < goal_sb; k++) ;
527 for (i = k; i == k || sb > (sbr->
k[0] - 1 + msb - odd); i--) {
529 odd = (sb + sbr->
k[0]) & 1;
553 }
while (sb != sbr->
kx[1] + sbr->
m[1]);
568 sbr->
n[0] = (sbr->
n[1] + 1) >> 1;
571 (sbr->
n[1] + 1) *
sizeof(sbr->
f_master[0]));
576 if (sbr->
kx[1] + sbr->
m[1] > 64) {
578 "Stop frequency border too high: %d\n", sbr->
kx[1] + sbr->
m[1]);
581 if (sbr->
kx[1] > 32) {
587 temp = sbr->
n[1] & 1;
588 for (k = 1; k <= sbr->
n[0]; k++)
592 log2f(sbr->
k[2] / (
float)sbr->
kx[1])));
600 for (k = 1; k <= sbr->
n_q; k++) {
601 temp += (sbr->
n[0] - temp) / (sbr->
n_q + 1 - k);
620 for (i = 0; i < elements; i++) {
634 unsigned bs_pointer = 0;
636 int abs_bord_trail = 16;
637 int num_rel_lead, num_rel_trail;
638 unsigned bs_num_env_old = ch_data->
bs_num_env;
653 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
658 ch_data->
t_env[0] = 0;
661 abs_bord_trail = (abs_bord_trail + (ch_data->
bs_num_env >> 1)) /
663 for (i = 0; i < num_rel_lead; i++)
664 ch_data->
t_env[i + 1] = ch_data->
t_env[i] + abs_bord_trail;
674 ch_data->
t_env[0] = 0;
677 for (i = 0; i < num_rel_trail; i++)
692 for (i = 0; i < num_rel_lead; i++)
704 ch_data->
bs_num_env = num_rel_lead + num_rel_trail + 1;
708 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
715 for (i = 0; i < num_rel_lead; i++)
717 for (i = 0; i < num_rel_trail; i++)
729 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
735 if (ch_data->
t_env[i-1] > ch_data->
t_env[i]) {
743 ch_data->
t_q[0] = ch_data->
t_env[0];
754 else if (bs_pointer == 1)
757 idx = bs_pointer - 1;
759 ch_data->
t_q[1] = ch_data->
t_env[idx];
762 ch_data->
e_a[0] = -(ch_data->
e_a[1] != bs_num_env_old);
763 ch_data->
e_a[1] = -1;
767 ch_data->
e_a[1] = bs_pointer - 1;
781 memcpy(dst->
t_q, src->
t_q,
sizeof(dst->
t_q));
786 dst->
e_a[1] = src->
e_a[1];
804 for (i = 0; i < sbr->
n_q; i++)
813 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
816 const int odd = sbr->
n[1] & 1;
852 for (j = 0; j < sbr->
n[ch_data->
bs_freq_res[i + 1]]; j++)
855 for (j = 0; j < sbr->
n[ch_data->
bs_freq_res[i + 1]]; j++) {
860 for (j = 0; j < sbr->
n[ch_data->
bs_freq_res[i + 1]]; j++) {
861 k = j ? 2*j - odd : 0;
867 for (j = 1; j < sbr->
n[ch_data->
bs_freq_res[i + 1]]; j++)
881 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
899 for (j = 0; j < sbr->
n_q; j++)
903 for (j = 1; j < sbr->
n_q; j++)
915 int bs_extension_id,
int *num_bits_left)
917 switch (bs_extension_id) {
920 av_log(ac->
avctx,
AV_LOG_ERROR,
"Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
1021 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1026 int num_bits_left =
get_bits(gb, 4);
1027 if (num_bits_left == 15)
1030 num_bits_left <<= 3;
1031 while (num_bits_left > 7) {
1035 if (num_bits_left < 0) {
1038 if (num_bits_left > 0)
1053 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1069 unsigned int num_sbr_bits = 0, num_align_bits;
1070 unsigned bytes_read;
1087 sbr->
kx[0] = sbr->
kx[1];
1088 sbr->
m[0] = sbr->
m[1];
1101 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1102 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1104 if (bytes_read > cnt) {
1106 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1124 float fac = temp1 / (1.0f + temp2);
1130 for (k = 0; k < sbr->
n_q; k++) {
1133 float fac = temp1 / (1.0f + temp2);
1139 for (ch = 0; ch < (id_aac ==
TYPE_CPE) + 1; ch++) {
1146 for (k = 0; k < sbr->
n_q; k++)
1161 float z[320],
float W[2][32][32][2],
int buf_idx)
1164 memcpy(x , x+1024, (320-32)*
sizeof(x[0]));
1165 memcpy(x+288, in, 1024*
sizeof(x[0]));
1166 for (i = 0; i < 32; i++) {
1183 float *
out,
float X[2][38][64],
1184 float mdct_buf[2][64],
1185 float *v0,
int *v_off,
const unsigned int div)
1189 const int step = 128 >> div;
1191 for (i = 0; i < 32; i++) {
1192 if (*v_off < step) {
1193 int saved_samples = (1280 - 128) >> div;
1201 for (n = 0; n < 32; n++) {
1202 X[0][i][ n] = -X[0][i][n];
1203 X[0][i][32+n] = X[1][i][31-n];
1205 mdct->
imdct_half(mdct, mdct_buf[0], X[0][i]);
1209 mdct->
imdct_half(mdct, mdct_buf[0], X[0][i]);
1210 mdct->
imdct_half(mdct, mdct_buf[1], X[1][i]);
1213 dsp->
vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1214 dsp->
vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1215 dsp->
vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1216 dsp->
vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1217 dsp->
vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1218 dsp->
vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1219 dsp->
vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1220 dsp->
vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1221 dsp->
vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1222 dsp->
vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1232 float (*alpha0)[2],
float (*alpha1)[2],
1233 const float X_low[32][40][2],
int k0)
1236 for (k = 0; k < k0; k++) {
1242 dk = phi[2][1][0] * phi[1][0][0] -
1243 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1249 float temp_real, temp_im;
1250 temp_real = phi[0][0][0] * phi[1][1][0] -
1251 phi[0][0][1] * phi[1][1][1] -
1252 phi[0][1][0] * phi[1][0][0];
1253 temp_im = phi[0][0][0] * phi[1][1][1] +
1254 phi[0][0][1] * phi[1][1][0] -
1255 phi[0][1][1] * phi[1][0][0];
1257 alpha1[k][0] = temp_real / dk;
1258 alpha1[k][1] = temp_im / dk;
1261 if (!phi[1][0][0]) {
1265 float temp_real, temp_im;
1266 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1267 alpha1[k][1] * phi[1][1][1];
1268 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1269 alpha1[k][0] * phi[1][1][1];
1271 alpha0[k][0] = -temp_real / phi[1][0][0];
1272 alpha0[k][1] = -temp_im / phi[1][0][0];
1275 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1276 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1290 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1292 for (i = 0; i < sbr->
n_q; i++) {
1298 if (new_bw < ch_data->bw_array[i]) {
1299 new_bw = 0.75f * new_bw + 0.25f * ch_data->
bw_array[i];
1301 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->
bw_array[i];
1302 ch_data->
bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1308 float X_low[32][40][2],
const float W[2][32][32][2],
1312 const int t_HFGen = 8;
1314 memset(X_low, 0, 32*
sizeof(*X_low));
1315 for (k = 0; k < sbr->
kx[1]; k++) {
1316 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1317 X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1318 X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1321 buf_idx = 1-buf_idx;
1322 for (k = 0; k < sbr->
kx[0]; k++) {
1323 for (i = 0; i < t_HFGen; i++) {
1324 X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1325 X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1333 float X_high[64][40][2],
const float X_low[32][40][2],
1334 const float (*alpha0)[2],
const float (*alpha1)[2],
1335 const float bw_array[5],
const uint8_t *t_env,
1350 "ERROR : no subband found for frequency %d\n", k);
1356 alpha0[p], alpha1[p], bw_array[g],
1357 2 * t_env[0], 2 * t_env[bs_num_env]);
1360 if (k < sbr->m[1] + sbr->
kx[1])
1361 memset(X_high + k, 0, (sbr->
m[1] + sbr->
kx[1] - k) *
sizeof(*X_high));
1368 const float Y0[38][64][2],
const float Y1[38][64][2],
1369 const float X_low[32][40][2],
int ch)
1374 memset(X, 0, 2*
sizeof(*X));
1375 for (k = 0; k < sbr->
kx[0]; k++) {
1376 for (i = 0; i < i_Temp; i++) {
1381 for (; k < sbr->
kx[0] + sbr->
m[0]; k++) {
1382 for (i = 0; i < i_Temp; i++) {
1383 X[0][i][k] = Y0[i + i_f][k][0];
1384 X[1][i][k] = Y0[i + i_f][k][1];
1388 for (k = 0; k < sbr->
kx[1]; k++) {
1389 for (i = i_Temp; i < 38; i++) {
1394 for (; k < sbr->
kx[1] + sbr->
m[1]; k++) {
1395 for (i = i_Temp; i < i_f; i++) {
1396 X[0][i][k] = Y1[i][k][0];
1397 X[1][i][k] = Y1[i][k][1];
1413 const unsigned int ilim = sbr->
n[ch_data->
bs_freq_res[e + 1]];
1417 if (sbr->
kx[1] != table[0]) {
1419 "Derived frequency tables were not regenerated.\n");
1423 for (i = 0; i < ilim; i++)
1424 for (m = table[i]; m < table[i + 1]; m++)
1429 for (i = 0; i < sbr->
n_q; i++)
1430 for (m = sbr->
f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1433 for (i = 0; i < sbr->
n[1]; i++) {
1435 const unsigned int m_midpoint =
1439 (e >= e_a[1] || (ch_data->
s_indexmapped[0][m_midpoint - sbr->
kx[1]] == 1));
1443 for (i = 0; i < ilim; i++) {
1444 int additional_sinusoid_present = 0;
1445 for (m = table[i]; m < table[i + 1]; m++) {
1447 additional_sinusoid_present = 1;
1451 memset(&sbr->
s_mapped[e][table[i] - sbr->
kx[1]], additional_sinusoid_present,
1452 (table[i + 1] - table[i]) *
sizeof(sbr->
s_mapped[e][0]));
1465 int kx1 = sbr->
kx[1];
1469 const float recip_env_size = 0.5f / (ch_data->
t_env[e + 1] - ch_data->
t_env[e]);
1473 for (m = 0; m < sbr->
m[1]; m++) {
1474 float sum = sbr->
dsp.
sum_square(X_high[m+kx1] + ilb, iub - ilb);
1475 e_curr[e][m] = sum * recip_env_size;
1482 const int env_size = 2 * (ch_data->
t_env[e + 1] - ch_data->
t_env[e]);
1487 for (p = 0; p < sbr->
n[ch_data->
bs_freq_res[e + 1]]; p++) {
1489 const int den = env_size * (table[p + 1] - table[p]);
1491 for (k = table[p]; k < table[p + 1]; k++) {
1495 for (k = table[p]; k < table[p + 1]; k++) {
1496 e_curr[e][k - kx1] = sum;
1508 SBRData *ch_data,
const int e_a[2])
1512 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1515 int delta = !((e == e_a[1]) || (e == e_a[0]));
1516 for (k = 0; k < sbr->
n_lim; k++) {
1517 float gain_boost, gain_max;
1518 float sum[2] = { 0.0f, 0.0f };
1519 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
1521 sbr->
q_m[e][m] = sqrtf(temp * sbr->
q_mapped[e][m]);
1525 ((1.0f + sbr->
e_curr[e][m]) *
1526 (1.0f + sbr->
q_mapped[e][m] * delta)));
1529 ((1.0f + sbr->
e_curr[e][m]) *
1533 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
1535 sum[1] += sbr->
e_curr[e][m];
1537 gain_max = limgain[sbr->
bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1538 gain_max =
FFMIN(100000.f, gain_max);
1539 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
1540 float q_m_max = sbr->
q_m[e][m] * gain_max / sbr->
gain[e][m];
1544 sum[0] = sum[1] = 0.0f;
1545 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
1548 + sbr->
s_m[e][m] * sbr->
s_m[e][m]
1549 + (delta && !sbr->
s_m[e][m]) * sbr->
q_m[e][m] * sbr->
q_m[e][m];
1551 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1552 gain_boost =
FFMIN(1.584893192f, gain_boost);
1553 for (m = sbr->
f_tablelim[k] - sbr->
kx[1]; m < sbr->f_tablelim[k + 1] - sbr->
kx[1]; m++) {
1554 sbr->
gain[e][m] *= gain_boost;
1555 sbr->
q_m[e][m] *= gain_boost;
1556 sbr->
s_m[e][m] *= gain_boost;
1564 const float X_high[64][40][2],
1570 const int kx = sbr->
kx[1];
1571 const int m_max = sbr->
m[1];
1572 static const float h_smooth[5] = {
1579 static const int8_t phi[2][4] = {
1583 float (*g_temp)[48] = ch_data->
g_temp, (*q_temp)[48] = ch_data->
q_temp;
1588 for (i = 0; i < h_SL; i++) {
1589 memcpy(g_temp[i + 2*ch_data->
t_env[0]], sbr->
gain[0], m_max *
sizeof(sbr->
gain[0][0]));
1590 memcpy(q_temp[i + 2*ch_data->
t_env[0]], sbr->
q_m[0], m_max *
sizeof(sbr->
q_m[0][0]));
1598 for (i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1599 memcpy(g_temp[h_SL + i], sbr->
gain[e], m_max *
sizeof(sbr->
gain[0][0]));
1600 memcpy(q_temp[h_SL + i], sbr->
q_m[e], m_max *
sizeof(sbr->
q_m[0][0]));
1605 for (i = 2 * ch_data->
t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1606 int phi_sign = (1 - 2*(kx & 1));
1609 float *g_filt, *q_filt;
1611 if (h_SL && e != e_a[0] && e != e_a[1]) {
1612 g_filt = g_filt_tab;
1613 q_filt = q_filt_tab;
1614 for (m = 0; m < m_max; m++) {
1615 const int idx1 = i + h_SL;
1618 for (j = 0; j <= h_SL; j++) {
1619 g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
1620 q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
1624 g_filt = g_temp[i + h_SL];
1628 sbr->
dsp.
hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
1631 if (e != e_a[0] && e != e_a[1]) {
1636 for (m = 0; m < m_max; m++) {
1638 sbr->
s_m[e][m] * phi[0][indexsine];
1640 sbr->
s_m[e][m] * (phi[1][indexsine] * phi_sign);
1641 phi_sign = -phi_sign;
1644 indexnoise = (indexnoise + m_max) & 0x1ff;
1645 indexsine = (indexsine + 1) & 3;
1657 int nch = (id_aac ==
TYPE_CPE) ? 2 : 1;
1661 sbr->
kx[0] = sbr->
kx[1];
1662 sbr->
m[0] = sbr->
m[1];
1670 for (ch = 0; ch < nch; ch++) {
1676 (
const float (*)[32][32][2]) sbr->
data[ch].
W,
1681 (
const float (*)[40][2]) sbr->
X_low, sbr->
k[0]);
1684 (
const float (*)[40][2]) sbr->
X_low,
1685 (
const float (*)[2]) sbr->
alpha0,
1686 (
const float (*)[2]) sbr->
alpha1,
1696 (
const float (*)[40][2]) sbr->
X_high,
1697 sbr, &sbr->
data[ch],
1704 (
const float (*)[64][2]) sbr->
data[ch].
Y[1-sbr->
data[ch].
Ypos],
1705 (
const float (*)[64][2]) sbr->
data[ch].
Y[ sbr->
data[ch].
Ypos],
1706 (
const float (*)[40][2]) sbr->
X_low, ch);
1713 memcpy(sbr->
X[1], sbr->
X[0],
sizeof(sbr->
X[0]));
uint8_t s_indexmapped[8][48]
unsigned bs_add_harmonic_flag
float alpha1[64][2]
First coefficient used to filter the subband signals.
float e_curr[7][48]
Estimated envelope.
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
Derived Frequency Band Tables (14496-3 sp04 p197)
int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
unsigned bs_smoothing_mode
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
float(* sum_square)(float(*x)[2], int n)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static void skip_bits_long(GetBitContext *s, int n)
static void copy_sbr_grid(SBRData *dst, const SBRData *src)
float X[2][2][38][64]
QMF values of the reconstructed signal.
int e_a[2]
l_APrev and l_A
av_cold void ff_aac_sbr_init(void)
Initialize SBR.
void(* sum64x5)(float *z)
unsigned kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
static void sbr_qmf_synthesis(FFTContext *mdct, SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp, float *out, float X[2][38][64], float mdct_buf[2][64], float *v0, int *v_off, const unsigned int div)
Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank (14496-3 sp04 p206) ...
float q_m[7][48]
Amplitude adjusted noise scalefactors.
float q_mapped[7][48]
Dequantized noise scalefactors, remapped.
unsigned n_lim
Number of limiter bands.
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, float X_high[64][40][2], const float X_low[32][40][2], const float(*alpha0)[2], const float(*alpha1)[2], const float bw_array[5], const uint8_t *t_env, int bs_num_env)
High Frequency Generator (14496-3 sp04 p215)
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_dlog(ac->avr, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> out
float e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
#define FF_PROFILE_AAC_HE_V2
SpectrumParameters spectrum_params
av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
float bw_array[5]
Chirp factors.
float qmf_filter_scratch[5][64]
unsigned n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
static const int8_t sbr_offset[6][16]
window coefficients for analysis/synthesis QMF banks
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the product of two vectors of floats and store the result in a vector of floats...
static float sbr_qmf_window_us[640]
static int qsort_comparison_function_int16(const void *a, const void *b)
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb_host, int crc, int cnt, int id_aac)
Decode Spectral Band Replication extension data; reference: table 4.55.
#define SBR_INIT_VLC_STATIC(num, size)
float env_facs[6][48]
Envelope scalefactors.
AAC Spectral Band Replication decoding data.
#define ENVELOPE_ADJUSTMENT_OFFSET
static int get_bits_count(const GetBitContext *s)
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
static void sbr_env_estimate(float(*e_curr)[48], float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data)
Estimation of current envelope (14496-3 sp04 p218)
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, int e_a[2])
High Frequency Adjustment (14496-3 sp04 p217) and Mapping (14496-3 sp04 p217)
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, int elements)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, SpectrumParameters *spectrum)
Master Frequency Band Table (14496-3 sp04 p194)
uint8_t patch_num_subbands[6]
static int array_min_int16(const int16_t *array, int nel)
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
uint8_t t_q[3]
Noise time borders.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
static int read_sbr_channel_pair_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_dlog(ac->avr, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
av_cold void ff_ps_ctx_init(PSContext *ps)
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64], const float Y0[38][64][2], const float Y1[38][64][2], const float X_low[32][40][2], int ch)
Generate the subband filtered lowband.
float alpha0[64][2]
Zeroth coefficient used to filter the subband signals.
#define NOISE_FLOOR_OFFSET
Spectral Band Replication definitions and structures.
void av_log(void *avcl, int level, const char *fmt,...)
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
void(* hf_apply_noise[4])(float(*Y)[2], const float *s_m, const float *q_filt, int noise, int kx, int m_max)
void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, float *L, float *R)
Apply one SBR element to one AAC element.
unsigned n_master
The number of frequency bands in f_master.
unsigned bs_interpol_freq
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read how the envelope and noise floor data is delta coded.
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, SBRDSPContext *sbrdsp, const float *in, float *x, float z[320], float W[2][32][32][2], int buf_idx)
Analysis QMF Bank (14496-3 sp04 p206)
float synthesis_filterbank_samples[SBR_SYNTHESIS_BUF_SIZE]
av_cold void ff_sbrdsp_init(SBRDSPContext *s)
void(* qmf_pre_shuffle)(float *z)
common internal API header
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int id_aac)
static void sbr_turnoff(SpectralBandReplication *sbr)
Places SBR in pure upsampling mode.
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
AAC Spectral Band Replication function declarations.
static float sbr_qmf_window_ds[320]
void(* neg_odd_64)(float *x)
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
static int read_sbr_single_channel_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
unsigned bs_limiter_gains
static av_always_inline av_const long int lrintf(float x)
float W[2][32][32][2]
QMF values of the original signal.
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
#define SBR_VLC_ROW(name)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
AAC definitions and structures.
float X_low[32][40][2]
QMF low frequency input to the HF generator.
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
av_cold void ff_ps_init(void)
void(* autocorrelate)(const float x[40][2], float phi[3][2][2])
if(ac->has_optimized_func)
#define SBR_SYNTHESIS_BUF_SIZE
float s_m[7][48]
Sinusoidal levels.
float X_high[64][40][2]
QMF output of the HF generator.
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
Limiter Frequency Band Table (14496-3 sp04 p198)
main external API structure.
unsigned m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
Replacements for frequently missing libm functions.
#define AVERROR_BUG
Bug detected, please report the issue.
static unsigned int get_bits1(GetBitContext *s)
static void skip_bits(GetBitContext *s, int n)
int synthesis_filterbank_samples_offset
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, float X_low[32][40][2], const float W[2][32][32][2], int buf_idx)
Generate the subband filtered lowband.
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
Initialize one SBR context.
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int bs_extension_id, int *num_bits_left)
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
uint16_t f_master[49]
The master QMF frequency grouping.
uint8_t bs_invf_mode[2][5]
static int in_table_int16(const int16_t *table, int last_el, int16_t needle)
float noise_facs[3][5]
Noise scalefactors.
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
OutputConfiguration oc[2]
static const int8_t ceil_log2[]
ceil(log2(index+1))
float analysis_filterbank_samples[1312]
uint8_t patch_start_subband[6]
uint8_t t_env[8]
Envelope time borders.
void(* vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len)
Calculate the product of two vectors of floats, add a third vector of floats and store the result in ...
Spectral Band Replication per channel data.
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
unsigned bs_limiter_bands
int Ypos
QMF output of the HF adjustor.
uint16_t f_tablelim[29]
Frequency borders for the limiter.
void(* qmf_post_shuffle)(float W[32][2], const float *z)
VLC_TYPE(* table)[2]
code, bits
void(* qmf_deint_bfly)(float *v, const float *src0, const float *src1)
static const int8_t vlc_sbr_lav[10]
unsigned n_q
Number of noise floor bands.
#define LOCAL_ALIGNED_16(t, v,...)
int ps
-1 implicit, 1 presence
void(* qmf_deint_neg)(float *v, const float *src)
void(* hf_gen)(float(*X_high)[2], const float(*X_low)[2], const float alpha0[2], const float alpha1[2], float bw, int start, int end)
Spectral Band Replication.
void(* hf_g_filt)(float(*Y)[2], const float(*X_high)[40][2], const float *g_filt, int m_max, intptr_t ixh)
uint8_t bs_add_harmonic[48]
int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read inverse filtering data.
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the product of two vectors of floats, and store the result in a vector of floats...