35 # define RSCALE(x) (x) 37 # define RSCALE(x) ((x) >> 1) 49 memset(s, 0,
sizeof(*s));
76 theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
77 scale = sqrt(fabs(scale));
79 alpha = 2 * M_PI * (i + theta) / n;
80 s->
tcos[i*tstep] =
FIX15(-cos(alpha) * scale);
81 s->
tsin[i*tstep] =
FIX15(-sin(alpha) * scale);
97 int k, n8, n4, n2, n, j;
98 const uint16_t *revtab = s->
revtab;
111 in2 = input + n2 - 1;
112 for(k = 0; k < n4; k++) {
114 CMUL(z[j].
re, z[j].
im, *in2, *in1, tcos[k], tsin[k]);
121 for(k = 0; k < n8; k++) {
123 CMUL(r0, i1, z[n8-k-1].
im, z[n8-k-1].
re, tsin[n8-k-1], tcos[n8-k-1]);
124 CMUL(r1, i0, z[n8+k ].
im, z[n8+k ].
re, tsin[n8+k ], tcos[n8+k ]);
146 for(k = 0; k < n4; k++) {
147 output[k] = -output[n2-k-1];
148 output[n-k-1] = output[n2+k];
159 int i, j, n, n8, n4, n2, n3;
161 const uint16_t *revtab = s->
revtab;
174 re =
RSCALE(-input[2*i+n3] - input[n3-1-2*i]);
175 im =
RSCALE(-input[n4+2*i] + input[n4-1-2*i]);
177 CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
179 re =
RSCALE( input[2*i] - input[n2-1-2*i]);
180 im =
RSCALE(-input[n2+2*i] - input[ n-1-2*i]);
182 CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
190 CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
191 CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]);
void * av_malloc(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
init MDCT or IMDCT computation.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_dlog(ac->avr, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> out
void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
Compute the middle half of the inverse MDCT of size N = 2^nbits, thus excluding the parts that can be...
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
#define CMUL(dre, dim, are, aim, bre, bim)
void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
Compute MDCT of size N = 2^nbits.
av_cold void ff_mdct_end(FFTContext *s)
common internal and external API header
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
enum mdct_permutation_type mdct_permutation
void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
Compute inverse MDCT of size N = 2^nbits.