Libav
alsdec.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bytestream.h"
35 #include "bgmc.h"
36 #include "bswapdsp.h"
37 #include "internal.h"
38 #include "libavutil/samplefmt.h"
39 #include "libavutil/crc.h"
40 
41 #include <stdint.h>
42 
47 static const int8_t parcor_rice_table[3][20][2] = {
48  { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
49  { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
50  { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
51  { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
52  { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
53  { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
54  {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
55  { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
56  { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
57  { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
58  {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
59  { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
60 };
61 
62 
68 static const int16_t parcor_scaled_values[] = {
69  -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
70  -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
71  -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
72  -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
73  -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
74  -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
75  -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
76  -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
77  -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
78  -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
79  -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
80  -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
81  -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
82  -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
83  -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
84  -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
85  -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
86  -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
87  -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
88  -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
89  -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
90  -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
91  -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
92  46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
93  143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
94  244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
95  349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
96  458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
97  571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
98  688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
99  810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
100  935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
101 };
102 
103 
107 static const uint8_t ltp_gain_values [4][4] = {
108  { 0, 8, 16, 24},
109  {32, 40, 48, 56},
110  {64, 70, 76, 82},
111  {88, 92, 96, 100}
112 };
113 
114 
118 static const int16_t mcc_weightings[] = {
119  204, 192, 179, 166, 153, 140, 128, 115,
120  102, 89, 76, 64, 51, 38, 25, 12,
121  0, -12, -25, -38, -51, -64, -76, -89,
122  -102, -115, -128, -140, -153, -166, -179, -192
123 };
124 
125 
128 static const uint8_t tail_code[16][6] = {
129  { 74, 44, 25, 13, 7, 3},
130  { 68, 42, 24, 13, 7, 3},
131  { 58, 39, 23, 13, 7, 3},
132  {126, 70, 37, 19, 10, 5},
133  {132, 70, 37, 20, 10, 5},
134  {124, 70, 38, 20, 10, 5},
135  {120, 69, 37, 20, 11, 5},
136  {116, 67, 37, 20, 11, 5},
137  {108, 66, 36, 20, 10, 5},
138  {102, 62, 36, 20, 10, 5},
139  { 88, 58, 34, 19, 10, 5},
140  {162, 89, 49, 25, 13, 7},
141  {156, 87, 49, 26, 14, 7},
142  {150, 86, 47, 26, 14, 7},
143  {142, 84, 47, 26, 14, 7},
144  {131, 79, 46, 26, 14, 7}
145 };
146 
147 
148 enum RA_Flag {
152 };
153 
154 
155 typedef struct {
156  uint32_t samples;
158  int floating;
159  int msb_first;
162  enum RA_Flag ra_flag;
166  int max_order;
168  int bgmc;
169  int sb_part;
171  int mc_coding;
173  int chan_sort;
174  int rlslms;
176  int *chan_pos;
179 
180 
181 typedef struct {
187  int weighting[6];
189 
190 
191 typedef struct {
196  const AVCRC *crc_table;
197  uint32_t crc_org;
198  uint32_t crc;
199  unsigned int cur_frame_length;
200  unsigned int frame_id;
201  unsigned int js_switch;
202  unsigned int num_blocks;
203  unsigned int s_max;
207  int *const_block;
208  unsigned int *shift_lsbs;
209  unsigned int *opt_order;
211  int *use_ltp;
212  int *ltp_lag;
213  int **ltp_gain;
227 } ALSDecContext;
228 
229 
230 typedef struct {
231  unsigned int block_length;
232  unsigned int ra_block;
233  int *const_block;
234  int js_blocks;
235  unsigned int *shift_lsbs;
236  unsigned int *opt_order;
238  int *use_ltp;
239  int *ltp_lag;
240  int *ltp_gain;
246 } ALSBlockData;
247 
248 
250 {
251 #ifdef DEBUG
252  AVCodecContext *avctx = ctx->avctx;
253  ALSSpecificConfig *sconf = &ctx->sconf;
254 
255  av_dlog(avctx, "resolution = %i\n", sconf->resolution);
256  av_dlog(avctx, "floating = %i\n", sconf->floating);
257  av_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
258  av_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
259  av_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
260  av_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
261  av_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
262  av_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
263  av_dlog(avctx, "max_order = %i\n", sconf->max_order);
264  av_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
265  av_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
266  av_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
267  av_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
268  av_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
269  av_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
270  av_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
271  av_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
272  av_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
273 #endif
274 }
275 
276 
280 {
281  GetBitContext gb;
282  uint64_t ht_size;
283  int i, config_offset;
284  MPEG4AudioConfig m4ac;
285  ALSSpecificConfig *sconf = &ctx->sconf;
286  AVCodecContext *avctx = ctx->avctx;
287  uint32_t als_id, header_size, trailer_size;
288 
289  init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8);
290 
291  config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
292  avctx->extradata_size * 8, 1);
293 
294  if (config_offset < 0)
295  return AVERROR_INVALIDDATA;
296 
297  skip_bits_long(&gb, config_offset);
298 
299  if (get_bits_left(&gb) < (30 << 3))
300  return AVERROR_INVALIDDATA;
301 
302  // read the fixed items
303  als_id = get_bits_long(&gb, 32);
304  avctx->sample_rate = m4ac.sample_rate;
305  skip_bits_long(&gb, 32); // sample rate already known
306  sconf->samples = get_bits_long(&gb, 32);
307  avctx->channels = m4ac.channels;
308  skip_bits(&gb, 16); // number of channels already knwon
309  skip_bits(&gb, 3); // skip file_type
310  sconf->resolution = get_bits(&gb, 3);
311  sconf->floating = get_bits1(&gb);
312  sconf->msb_first = get_bits1(&gb);
313  sconf->frame_length = get_bits(&gb, 16) + 1;
314  sconf->ra_distance = get_bits(&gb, 8);
315  sconf->ra_flag = get_bits(&gb, 2);
316  sconf->adapt_order = get_bits1(&gb);
317  sconf->coef_table = get_bits(&gb, 2);
318  sconf->long_term_prediction = get_bits1(&gb);
319  sconf->max_order = get_bits(&gb, 10);
320  sconf->block_switching = get_bits(&gb, 2);
321  sconf->bgmc = get_bits1(&gb);
322  sconf->sb_part = get_bits1(&gb);
323  sconf->joint_stereo = get_bits1(&gb);
324  sconf->mc_coding = get_bits1(&gb);
325  sconf->chan_config = get_bits1(&gb);
326  sconf->chan_sort = get_bits1(&gb);
327  sconf->crc_enabled = get_bits1(&gb);
328  sconf->rlslms = get_bits1(&gb);
329  skip_bits(&gb, 5); // skip 5 reserved bits
330  skip_bits1(&gb); // skip aux_data_enabled
331 
332 
333  // check for ALSSpecificConfig struct
334  if (als_id != MKBETAG('A','L','S','\0'))
335  return AVERROR_INVALIDDATA;
336 
337  ctx->cur_frame_length = sconf->frame_length;
338 
339  // read channel config
340  if (sconf->chan_config)
341  sconf->chan_config_info = get_bits(&gb, 16);
342  // TODO: use this to set avctx->channel_layout
343 
344 
345  // read channel sorting
346  if (sconf->chan_sort && avctx->channels > 1) {
347  int chan_pos_bits = av_ceil_log2(avctx->channels);
348  int bits_needed = avctx->channels * chan_pos_bits + 7;
349  if (get_bits_left(&gb) < bits_needed)
350  return AVERROR_INVALIDDATA;
351 
352  if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
353  return AVERROR(ENOMEM);
354 
355  for (i = 0; i < avctx->channels; i++)
356  sconf->chan_pos[i] = get_bits(&gb, chan_pos_bits);
357 
358  align_get_bits(&gb);
359  // TODO: use this to actually do channel sorting
360  } else {
361  sconf->chan_sort = 0;
362  }
363 
364 
365  // read fixed header and trailer sizes,
366  // if size = 0xFFFFFFFF then there is no data field!
367  if (get_bits_left(&gb) < 64)
368  return AVERROR_INVALIDDATA;
369 
370  header_size = get_bits_long(&gb, 32);
371  trailer_size = get_bits_long(&gb, 32);
372  if (header_size == 0xFFFFFFFF)
373  header_size = 0;
374  if (trailer_size == 0xFFFFFFFF)
375  trailer_size = 0;
376 
377  ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
378 
379 
380  // skip the header and trailer data
381  if (get_bits_left(&gb) < ht_size)
382  return AVERROR_INVALIDDATA;
383 
384  if (ht_size > INT32_MAX)
385  return AVERROR_PATCHWELCOME;
386 
387  skip_bits_long(&gb, ht_size);
388 
389 
390  // initialize CRC calculation
391  if (sconf->crc_enabled) {
392  if (get_bits_left(&gb) < 32)
393  return AVERROR_INVALIDDATA;
394 
395  if (avctx->err_recognition & AV_EF_CRCCHECK) {
397  ctx->crc = 0xFFFFFFFF;
398  ctx->crc_org = ~get_bits_long(&gb, 32);
399  } else
400  skip_bits_long(&gb, 32);
401  }
402 
403 
404  // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
405 
407 
408  return 0;
409 }
410 
411 
415 {
416  ALSSpecificConfig *sconf = &ctx->sconf;
417  int error = 0;
418 
419  // report unsupported feature and set error value
420  #define MISSING_ERR(cond, str, errval) \
421  { \
422  if (cond) { \
423  avpriv_report_missing_feature(ctx->avctx, \
424  str); \
425  error = errval; \
426  } \
427  }
428 
429  MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
430  MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
431  MISSING_ERR(sconf->chan_sort, "Channel sorting", 0);
432 
433  return error;
434 }
435 
436 
440 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
441  unsigned int div, unsigned int **div_blocks,
442  unsigned int *num_blocks)
443 {
444  if (n < 31 && ((bs_info << n) & 0x40000000)) {
445  // if the level is valid and the investigated bit n is set
446  // then recursively check both children at bits (2n+1) and (2n+2)
447  n *= 2;
448  div += 1;
449  parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
450  parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
451  } else {
452  // else the bit is not set or the last level has been reached
453  // (bit implicitly not set)
454  **div_blocks = div;
455  (*div_blocks)++;
456  (*num_blocks)++;
457  }
458 }
459 
460 
463 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
464 {
465  int max = get_bits_left(gb) - k;
466  int q = get_unary(gb, 0, max);
467  int r = k ? get_bits1(gb) : !(q & 1);
468 
469  if (k > 1) {
470  q <<= (k - 1);
471  q += get_bits_long(gb, k - 1);
472  } else if (!k) {
473  q >>= 1;
474  }
475  return r ? q : ~q;
476 }
477 
478 
481 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
482 {
483  int i, j;
484 
485  for (i = 0, j = k - 1; i < j; i++, j--) {
486  int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
487  cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
488  cof[i] += tmp1;
489  }
490  if (i == j)
491  cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
492 
493  cof[k] = par[k];
494 }
495 
496 
501 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
502  uint32_t *bs_info)
503 {
504  ALSSpecificConfig *sconf = &ctx->sconf;
505  GetBitContext *gb = &ctx->gb;
506  unsigned int *ptr_div_blocks = div_blocks;
507  unsigned int b;
508 
509  if (sconf->block_switching) {
510  unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
511  *bs_info = get_bits_long(gb, bs_info_len);
512  *bs_info <<= (32 - bs_info_len);
513  }
514 
515  ctx->num_blocks = 0;
516  parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
517 
518  // The last frame may have an overdetermined block structure given in
519  // the bitstream. In that case the defined block structure would need
520  // more samples than available to be consistent.
521  // The block structure is actually used but the block sizes are adapted
522  // to fit the actual number of available samples.
523  // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
524  // This results in the actual block sizes: 2 2 1 0.
525  // This is not specified in 14496-3 but actually done by the reference
526  // codec RM22 revision 2.
527  // This appears to happen in case of an odd number of samples in the last
528  // frame which is actually not allowed by the block length switching part
529  // of 14496-3.
530  // The ALS conformance files feature an odd number of samples in the last
531  // frame.
532 
533  for (b = 0; b < ctx->num_blocks; b++)
534  div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
535 
536  if (ctx->cur_frame_length != ctx->sconf.frame_length) {
537  unsigned int remaining = ctx->cur_frame_length;
538 
539  for (b = 0; b < ctx->num_blocks; b++) {
540  if (remaining <= div_blocks[b]) {
541  div_blocks[b] = remaining;
542  ctx->num_blocks = b + 1;
543  break;
544  }
545 
546  remaining -= div_blocks[b];
547  }
548  }
549 }
550 
551 
555 {
556  ALSSpecificConfig *sconf = &ctx->sconf;
557  AVCodecContext *avctx = ctx->avctx;
558  GetBitContext *gb = &ctx->gb;
559 
560  *bd->raw_samples = 0;
561  *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
562  bd->js_blocks = get_bits1(gb);
563 
564  // skip 5 reserved bits
565  skip_bits(gb, 5);
566 
567  if (*bd->const_block) {
568  unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
569  *bd->raw_samples = get_sbits_long(gb, const_val_bits);
570  }
571 
572  // ensure constant block decoding by reusing this field
573  *bd->const_block = 1;
574 }
575 
576 
580 {
581  int smp = bd->block_length - 1;
582  int32_t val = *bd->raw_samples;
583  int32_t *dst = bd->raw_samples + 1;
584 
585  // write raw samples into buffer
586  for (; smp; smp--)
587  *dst++ = val;
588 }
589 
590 
594 {
595  ALSSpecificConfig *sconf = &ctx->sconf;
596  AVCodecContext *avctx = ctx->avctx;
597  GetBitContext *gb = &ctx->gb;
598  unsigned int k;
599  unsigned int s[8];
600  unsigned int sx[8];
601  unsigned int sub_blocks, log2_sub_blocks, sb_length;
602  unsigned int start = 0;
603  unsigned int opt_order;
604  int sb;
605  int32_t *quant_cof = bd->quant_cof;
606  int32_t *current_res;
607 
608 
609  // ensure variable block decoding by reusing this field
610  *bd->const_block = 0;
611 
612  *bd->opt_order = 1;
613  bd->js_blocks = get_bits1(gb);
614 
615  opt_order = *bd->opt_order;
616 
617  // determine the number of subblocks for entropy decoding
618  if (!sconf->bgmc && !sconf->sb_part) {
619  log2_sub_blocks = 0;
620  } else {
621  if (sconf->bgmc && sconf->sb_part)
622  log2_sub_blocks = get_bits(gb, 2);
623  else
624  log2_sub_blocks = 2 * get_bits1(gb);
625  }
626 
627  sub_blocks = 1 << log2_sub_blocks;
628 
629  // do not continue in case of a damaged stream since
630  // block_length must be evenly divisible by sub_blocks
631  if (bd->block_length & (sub_blocks - 1)) {
632  av_log(avctx, AV_LOG_WARNING,
633  "Block length is not evenly divisible by the number of subblocks.\n");
634  return AVERROR_INVALIDDATA;
635  }
636 
637  sb_length = bd->block_length >> log2_sub_blocks;
638 
639  if (sconf->bgmc) {
640  s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
641  for (k = 1; k < sub_blocks; k++)
642  s[k] = s[k - 1] + decode_rice(gb, 2);
643 
644  for (k = 0; k < sub_blocks; k++) {
645  sx[k] = s[k] & 0x0F;
646  s [k] >>= 4;
647  }
648  } else {
649  s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
650  for (k = 1; k < sub_blocks; k++)
651  s[k] = s[k - 1] + decode_rice(gb, 0);
652  }
653  for (k = 1; k < sub_blocks; k++)
654  if (s[k] > 32) {
655  av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
656  return AVERROR_INVALIDDATA;
657  }
658 
659  if (get_bits1(gb))
660  *bd->shift_lsbs = get_bits(gb, 4) + 1;
661 
662  *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
663 
664 
665  if (!sconf->rlslms) {
666  if (sconf->adapt_order && sconf->max_order) {
667  int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
668  2, sconf->max_order + 1));
669  *bd->opt_order = get_bits(gb, opt_order_length);
670  if (*bd->opt_order > sconf->max_order) {
671  *bd->opt_order = sconf->max_order;
672  av_log(avctx, AV_LOG_ERROR, "Predictor order too large!\n");
673  return AVERROR_INVALIDDATA;
674  }
675  } else {
676  *bd->opt_order = sconf->max_order;
677  }
678 
679  opt_order = *bd->opt_order;
680 
681  if (opt_order) {
682  int add_base;
683 
684  if (sconf->coef_table == 3) {
685  add_base = 0x7F;
686 
687  // read coefficient 0
688  quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
689 
690  // read coefficient 1
691  if (opt_order > 1)
692  quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
693 
694  // read coefficients 2 to opt_order
695  for (k = 2; k < opt_order; k++)
696  quant_cof[k] = get_bits(gb, 7);
697  } else {
698  int k_max;
699  add_base = 1;
700 
701  // read coefficient 0 to 19
702  k_max = FFMIN(opt_order, 20);
703  for (k = 0; k < k_max; k++) {
704  int rice_param = parcor_rice_table[sconf->coef_table][k][1];
705  int offset = parcor_rice_table[sconf->coef_table][k][0];
706  quant_cof[k] = decode_rice(gb, rice_param) + offset;
707  if (quant_cof[k] < -64 || quant_cof[k] > 63) {
708  av_log(avctx, AV_LOG_ERROR,
709  "quant_cof %"PRIu32" is out of range\n",
710  quant_cof[k]);
711  return AVERROR_INVALIDDATA;
712  }
713  }
714 
715  // read coefficients 20 to 126
716  k_max = FFMIN(opt_order, 127);
717  for (; k < k_max; k++)
718  quant_cof[k] = decode_rice(gb, 2) + (k & 1);
719 
720  // read coefficients 127 to opt_order
721  for (; k < opt_order; k++)
722  quant_cof[k] = decode_rice(gb, 1);
723 
724  quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
725 
726  if (opt_order > 1)
727  quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
728  }
729 
730  for (k = 2; k < opt_order; k++)
731  quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
732  }
733  }
734 
735  // read LTP gain and lag values
736  if (sconf->long_term_prediction) {
737  *bd->use_ltp = get_bits1(gb);
738 
739  if (*bd->use_ltp) {
740  int r, c;
741 
742  bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
743  bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
744 
745  r = get_unary(gb, 0, 3);
746  c = get_bits(gb, 2);
747  bd->ltp_gain[2] = ltp_gain_values[r][c];
748 
749  bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
750  bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
751 
752  *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
753  *bd->ltp_lag += FFMAX(4, opt_order + 1);
754  }
755  }
756 
757  // read first value and residuals in case of a random access block
758  if (bd->ra_block) {
759  if (opt_order)
760  bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
761  if (opt_order > 1)
762  bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
763  if (opt_order > 2)
764  bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
765 
766  start = FFMIN(opt_order, 3);
767  }
768 
769  // read all residuals
770  if (sconf->bgmc) {
771  int delta[8];
772  unsigned int k [8];
773  unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
774 
775  // read most significant bits
776  unsigned int high;
777  unsigned int low;
778  unsigned int value;
779 
780  ff_bgmc_decode_init(gb, &high, &low, &value);
781 
782  current_res = bd->raw_samples + start;
783 
784  for (sb = 0; sb < sub_blocks; sb++) {
785  unsigned int sb_len = sb_length - (sb ? 0 : start);
786 
787  k [sb] = s[sb] > b ? s[sb] - b : 0;
788  delta[sb] = 5 - s[sb] + k[sb];
789 
790  ff_bgmc_decode(gb, sb_len, current_res,
791  delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
792 
793  current_res += sb_len;
794  }
795 
796  ff_bgmc_decode_end(gb);
797 
798 
799  // read least significant bits and tails
800  current_res = bd->raw_samples + start;
801 
802  for (sb = 0; sb < sub_blocks; sb++, start = 0) {
803  unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
804  unsigned int cur_k = k[sb];
805  unsigned int cur_s = s[sb];
806 
807  for (; start < sb_length; start++) {
808  int32_t res = *current_res;
809 
810  if (res == cur_tail_code) {
811  unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
812  << (5 - delta[sb]);
813 
814  res = decode_rice(gb, cur_s);
815 
816  if (res >= 0) {
817  res += (max_msb ) << cur_k;
818  } else {
819  res -= (max_msb - 1) << cur_k;
820  }
821  } else {
822  if (res > cur_tail_code)
823  res--;
824 
825  if (res & 1)
826  res = -res;
827 
828  res >>= 1;
829 
830  if (cur_k) {
831  res <<= cur_k;
832  res |= get_bits_long(gb, cur_k);
833  }
834  }
835 
836  *current_res++ = res;
837  }
838  }
839  } else {
840  current_res = bd->raw_samples + start;
841 
842  for (sb = 0; sb < sub_blocks; sb++, start = 0)
843  for (; start < sb_length; start++)
844  *current_res++ = decode_rice(gb, s[sb]);
845  }
846 
847  if (!sconf->mc_coding || ctx->js_switch)
848  align_get_bits(gb);
849 
850  return 0;
851 }
852 
853 
857 {
858  ALSSpecificConfig *sconf = &ctx->sconf;
859  unsigned int block_length = bd->block_length;
860  unsigned int smp = 0;
861  unsigned int k;
862  int opt_order = *bd->opt_order;
863  int sb;
864  int64_t y;
865  int32_t *quant_cof = bd->quant_cof;
866  int32_t *lpc_cof = bd->lpc_cof;
867  int32_t *raw_samples = bd->raw_samples;
868  int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
869  int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
870 
871  // reverse long-term prediction
872  if (*bd->use_ltp) {
873  int ltp_smp;
874 
875  for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
876  int center = ltp_smp - *bd->ltp_lag;
877  int begin = FFMAX(0, center - 2);
878  int end = center + 3;
879  int tab = 5 - (end - begin);
880  int base;
881 
882  y = 1 << 6;
883 
884  for (base = begin; base < end; base++, tab++)
885  y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
886 
887  raw_samples[ltp_smp] += y >> 7;
888  }
889  }
890 
891  // reconstruct all samples from residuals
892  if (bd->ra_block) {
893  for (smp = 0; smp < opt_order; smp++) {
894  y = 1 << 19;
895 
896  for (sb = 0; sb < smp; sb++)
897  y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
898 
899  *raw_samples++ -= y >> 20;
900  parcor_to_lpc(smp, quant_cof, lpc_cof);
901  }
902  } else {
903  for (k = 0; k < opt_order; k++)
904  parcor_to_lpc(k, quant_cof, lpc_cof);
905 
906  // store previous samples in case that they have to be altered
907  if (*bd->store_prev_samples)
908  memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
909  sizeof(*bd->prev_raw_samples) * sconf->max_order);
910 
911  // reconstruct difference signal for prediction (joint-stereo)
912  if (bd->js_blocks && bd->raw_other) {
913  int32_t *left, *right;
914 
915  if (bd->raw_other > raw_samples) { // D = R - L
916  left = raw_samples;
917  right = bd->raw_other;
918  } else { // D = R - L
919  left = bd->raw_other;
920  right = raw_samples;
921  }
922 
923  for (sb = -1; sb >= -sconf->max_order; sb--)
924  raw_samples[sb] = right[sb] - left[sb];
925  }
926 
927  // reconstruct shifted signal
928  if (*bd->shift_lsbs)
929  for (sb = -1; sb >= -sconf->max_order; sb--)
930  raw_samples[sb] >>= *bd->shift_lsbs;
931  }
932 
933  // reverse linear prediction coefficients for efficiency
934  lpc_cof = lpc_cof + opt_order;
935 
936  for (sb = 0; sb < opt_order; sb++)
937  lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
938 
939  // reconstruct raw samples
940  raw_samples = bd->raw_samples + smp;
941  lpc_cof = lpc_cof_reversed + opt_order;
942 
943  for (; raw_samples < raw_samples_end; raw_samples++) {
944  y = 1 << 19;
945 
946  for (sb = -opt_order; sb < 0; sb++)
947  y += MUL64(lpc_cof[sb], raw_samples[sb]);
948 
949  *raw_samples -= y >> 20;
950  }
951 
952  raw_samples = bd->raw_samples;
953 
954  // restore previous samples in case that they have been altered
955  if (*bd->store_prev_samples)
956  memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
957  sizeof(*raw_samples) * sconf->max_order);
958 
959  return 0;
960 }
961 
962 
965 static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
966 {
967  int ret = 0;
968  GetBitContext *gb = &ctx->gb;
969 
970  *bd->shift_lsbs = 0;
971  // read block type flag and read the samples accordingly
972  if (get_bits1(gb)) {
973  ret = read_var_block_data(ctx, bd);
974  } else {
975  read_const_block_data(ctx, bd);
976  }
977 
978  return ret;
979 }
980 
981 
985 {
986  unsigned int smp;
987  int ret = 0;
988 
989  // read block type flag and read the samples accordingly
990  if (*bd->const_block)
991  decode_const_block_data(ctx, bd);
992  else
993  ret = decode_var_block_data(ctx, bd); // always return 0
994 
995  if (ret < 0)
996  return ret;
997 
998  // TODO: read RLSLMS extension data
999 
1000  if (*bd->shift_lsbs)
1001  for (smp = 0; smp < bd->block_length; smp++)
1002  bd->raw_samples[smp] <<= *bd->shift_lsbs;
1003 
1004  return 0;
1005 }
1006 
1007 
1011 {
1012  int ret;
1013 
1014  if ((ret = read_block(ctx, bd)) < 0)
1015  return ret;
1016 
1017  return decode_block(ctx, bd);
1018 }
1019 
1020 
1024 static void zero_remaining(unsigned int b, unsigned int b_max,
1025  const unsigned int *div_blocks, int32_t *buf)
1026 {
1027  unsigned int count = 0;
1028 
1029  for (; b < b_max; b++)
1030  count += div_blocks[b];
1031 
1032  if (count)
1033  memset(buf, 0, sizeof(*buf) * count);
1034 }
1035 
1036 
1039 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1040  unsigned int c, const unsigned int *div_blocks,
1041  unsigned int *js_blocks)
1042 {
1043  int ret;
1044  unsigned int b;
1045  ALSBlockData bd = { 0 };
1046 
1047  bd.ra_block = ra_frame;
1048  bd.const_block = ctx->const_block;
1049  bd.shift_lsbs = ctx->shift_lsbs;
1050  bd.opt_order = ctx->opt_order;
1052  bd.use_ltp = ctx->use_ltp;
1053  bd.ltp_lag = ctx->ltp_lag;
1054  bd.ltp_gain = ctx->ltp_gain[0];
1055  bd.quant_cof = ctx->quant_cof[0];
1056  bd.lpc_cof = ctx->lpc_cof[0];
1058  bd.raw_samples = ctx->raw_samples[c];
1059 
1060 
1061  for (b = 0; b < ctx->num_blocks; b++) {
1062  bd.block_length = div_blocks[b];
1063 
1064  if ((ret = read_decode_block(ctx, &bd)) < 0) {
1065  // damaged block, write zero for the rest of the frame
1066  zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1067  return ret;
1068  }
1069  bd.raw_samples += div_blocks[b];
1070  bd.ra_block = 0;
1071  }
1072 
1073  return 0;
1074 }
1075 
1076 
1079 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1080  unsigned int c, const unsigned int *div_blocks,
1081  unsigned int *js_blocks)
1082 {
1083  ALSSpecificConfig *sconf = &ctx->sconf;
1084  unsigned int offset = 0;
1085  unsigned int b;
1086  int ret;
1087  ALSBlockData bd[2] = { { 0 } };
1088 
1089  bd[0].ra_block = ra_frame;
1090  bd[0].const_block = ctx->const_block;
1091  bd[0].shift_lsbs = ctx->shift_lsbs;
1092  bd[0].opt_order = ctx->opt_order;
1094  bd[0].use_ltp = ctx->use_ltp;
1095  bd[0].ltp_lag = ctx->ltp_lag;
1096  bd[0].ltp_gain = ctx->ltp_gain[0];
1097  bd[0].quant_cof = ctx->quant_cof[0];
1098  bd[0].lpc_cof = ctx->lpc_cof[0];
1099  bd[0].prev_raw_samples = ctx->prev_raw_samples;
1100  bd[0].js_blocks = *js_blocks;
1101 
1102  bd[1].ra_block = ra_frame;
1103  bd[1].const_block = ctx->const_block;
1104  bd[1].shift_lsbs = ctx->shift_lsbs;
1105  bd[1].opt_order = ctx->opt_order;
1107  bd[1].use_ltp = ctx->use_ltp;
1108  bd[1].ltp_lag = ctx->ltp_lag;
1109  bd[1].ltp_gain = ctx->ltp_gain[0];
1110  bd[1].quant_cof = ctx->quant_cof[0];
1111  bd[1].lpc_cof = ctx->lpc_cof[0];
1112  bd[1].prev_raw_samples = ctx->prev_raw_samples;
1113  bd[1].js_blocks = *(js_blocks + 1);
1114 
1115  // decode all blocks
1116  for (b = 0; b < ctx->num_blocks; b++) {
1117  unsigned int s;
1118 
1119  bd[0].block_length = div_blocks[b];
1120  bd[1].block_length = div_blocks[b];
1121 
1122  bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1123  bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1124 
1125  bd[0].raw_other = bd[1].raw_samples;
1126  bd[1].raw_other = bd[0].raw_samples;
1127 
1128  if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1129  (ret = read_decode_block(ctx, &bd[1])) < 0)
1130  goto fail;
1131 
1132  // reconstruct joint-stereo blocks
1133  if (bd[0].js_blocks) {
1134  if (bd[1].js_blocks)
1135  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair!\n");
1136 
1137  for (s = 0; s < div_blocks[b]; s++)
1138  bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1139  } else if (bd[1].js_blocks) {
1140  for (s = 0; s < div_blocks[b]; s++)
1141  bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1142  }
1143 
1144  offset += div_blocks[b];
1145  bd[0].ra_block = 0;
1146  bd[1].ra_block = 0;
1147  }
1148 
1149  // store carryover raw samples,
1150  // the others channel raw samples are stored by the calling function.
1151  memmove(ctx->raw_samples[c] - sconf->max_order,
1152  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1153  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1154 
1155  return 0;
1156 fail:
1157  // damaged block, write zero for the rest of the frame
1158  zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1159  zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1160  return ret;
1161 }
1162 
1163 static inline int als_weighting(GetBitContext *gb, int k, int off)
1164 {
1165  int idx = av_clip(decode_rice(gb, k) + off,
1166  0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1167  return mcc_weightings[idx];
1168 }
1169 
1172 static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
1173 {
1174  GetBitContext *gb = &ctx->gb;
1175  ALSChannelData *current = cd;
1176  unsigned int channels = ctx->avctx->channels;
1177  int entries = 0;
1178 
1179  while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1180  current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1181 
1182  if (current->master_channel >= channels) {
1183  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
1184  return AVERROR_INVALIDDATA;
1185  }
1186 
1187  if (current->master_channel != c) {
1188  current->time_diff_flag = get_bits1(gb);
1189  current->weighting[0] = als_weighting(gb, 1, 16);
1190  current->weighting[1] = als_weighting(gb, 2, 14);
1191  current->weighting[2] = als_weighting(gb, 1, 16);
1192 
1193  if (current->time_diff_flag) {
1194  current->weighting[3] = als_weighting(gb, 1, 16);
1195  current->weighting[4] = als_weighting(gb, 1, 16);
1196  current->weighting[5] = als_weighting(gb, 1, 16);
1197 
1198  current->time_diff_sign = get_bits1(gb);
1199  current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1200  }
1201  }
1202 
1203  current++;
1204  entries++;
1205  }
1206 
1207  if (entries == channels) {
1208  av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
1209  return AVERROR_INVALIDDATA;
1210  }
1211 
1212  align_get_bits(gb);
1213  return 0;
1214 }
1215 
1216 
1220  ALSChannelData **cd, int *reverted,
1221  unsigned int offset, int c)
1222 {
1223  ALSChannelData *ch = cd[c];
1224  unsigned int dep = 0;
1225  unsigned int channels = ctx->avctx->channels;
1226  unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1227 
1228  if (reverted[c])
1229  return 0;
1230 
1231  reverted[c] = 1;
1232 
1233  while (dep < channels && !ch[dep].stop_flag) {
1234  revert_channel_correlation(ctx, bd, cd, reverted, offset,
1235  ch[dep].master_channel);
1236 
1237  dep++;
1238  }
1239 
1240  if (dep == channels) {
1241  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation!\n");
1242  return AVERROR_INVALIDDATA;
1243  }
1244 
1245  bd->const_block = ctx->const_block + c;
1246  bd->shift_lsbs = ctx->shift_lsbs + c;
1247  bd->opt_order = ctx->opt_order + c;
1248  bd->store_prev_samples = ctx->store_prev_samples + c;
1249  bd->use_ltp = ctx->use_ltp + c;
1250  bd->ltp_lag = ctx->ltp_lag + c;
1251  bd->ltp_gain = ctx->ltp_gain[c];
1252  bd->lpc_cof = ctx->lpc_cof[c];
1253  bd->quant_cof = ctx->quant_cof[c];
1254  bd->raw_samples = ctx->raw_samples[c] + offset;
1255 
1256  dep = 0;
1257  while (!ch[dep].stop_flag) {
1258  ptrdiff_t smp;
1259  ptrdiff_t begin = 1;
1260  ptrdiff_t end = bd->block_length - 1;
1261  int64_t y;
1262  int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1263 
1264  if (ch[dep].time_diff_flag) {
1265  int t = ch[dep].time_diff_index;
1266 
1267  if (ch[dep].time_diff_sign) {
1268  t = -t;
1269  begin -= t;
1270  } else {
1271  end -= t;
1272  }
1273 
1274  if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1275  FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1276  av_log(ctx->avctx, AV_LOG_ERROR,
1277  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1278  master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1279  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1280  return AVERROR_INVALIDDATA;
1281  }
1282 
1283  for (smp = begin; smp < end; smp++) {
1284  y = (1 << 6) +
1285  MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1286  MUL64(ch[dep].weighting[1], master[smp ]) +
1287  MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1288  MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1289  MUL64(ch[dep].weighting[4], master[smp + t]) +
1290  MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1291 
1292  bd->raw_samples[smp] += y >> 7;
1293  }
1294  } else {
1295 
1296  if (begin - 1 < ctx->raw_buffer - master ||
1297  end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1298  av_log(ctx->avctx, AV_LOG_ERROR,
1299  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1300  master + begin - 1, master + end + 1,
1301  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1302  return AVERROR_INVALIDDATA;
1303  }
1304 
1305  for (smp = begin; smp < end; smp++) {
1306  y = (1 << 6) +
1307  MUL64(ch[dep].weighting[0], master[smp - 1]) +
1308  MUL64(ch[dep].weighting[1], master[smp ]) +
1309  MUL64(ch[dep].weighting[2], master[smp + 1]);
1310 
1311  bd->raw_samples[smp] += y >> 7;
1312  }
1313  }
1314 
1315  dep++;
1316  }
1317 
1318  return 0;
1319 }
1320 
1321 
1324 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1325 {
1326  ALSSpecificConfig *sconf = &ctx->sconf;
1327  AVCodecContext *avctx = ctx->avctx;
1328  GetBitContext *gb = &ctx->gb;
1329  unsigned int div_blocks[32];
1330  unsigned int c;
1331  unsigned int js_blocks[2];
1332  uint32_t bs_info = 0;
1333  int ret;
1334 
1335  // skip the size of the ra unit if present in the frame
1336  if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1337  skip_bits_long(gb, 32);
1338 
1339  if (sconf->mc_coding && sconf->joint_stereo) {
1340  ctx->js_switch = get_bits1(gb);
1341  align_get_bits(gb);
1342  }
1343 
1344  if (!sconf->mc_coding || ctx->js_switch) {
1345  int independent_bs = !sconf->joint_stereo;
1346 
1347  for (c = 0; c < avctx->channels; c++) {
1348  js_blocks[0] = 0;
1349  js_blocks[1] = 0;
1350 
1351  get_block_sizes(ctx, div_blocks, &bs_info);
1352 
1353  // if joint_stereo and block_switching is set, independent decoding
1354  // is signaled via the first bit of bs_info
1355  if (sconf->joint_stereo && sconf->block_switching)
1356  if (bs_info >> 31)
1357  independent_bs = 2;
1358 
1359  // if this is the last channel, it has to be decoded independently
1360  if (c == avctx->channels - 1)
1361  independent_bs = 1;
1362 
1363  if (independent_bs) {
1364  ret = decode_blocks_ind(ctx, ra_frame, c,
1365  div_blocks, js_blocks);
1366  if (ret < 0)
1367  return ret;
1368  independent_bs--;
1369  } else {
1370  ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1371  if (ret < 0)
1372  return ret;
1373 
1374  c++;
1375  }
1376 
1377  // store carryover raw samples
1378  memmove(ctx->raw_samples[c] - sconf->max_order,
1379  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1380  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1381  }
1382  } else { // multi-channel coding
1383  ALSBlockData bd = { 0 };
1384  int b, ret;
1385  int *reverted_channels = ctx->reverted_channels;
1386  unsigned int offset = 0;
1387 
1388  for (c = 0; c < avctx->channels; c++)
1389  if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1390  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
1391  return AVERROR_INVALIDDATA;
1392  }
1393 
1394  memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1395 
1396  bd.ra_block = ra_frame;
1398 
1399  get_block_sizes(ctx, div_blocks, &bs_info);
1400 
1401  for (b = 0; b < ctx->num_blocks; b++) {
1402  bd.block_length = div_blocks[b];
1403  if (bd.block_length <= 0) {
1404  av_log(ctx->avctx, AV_LOG_WARNING,
1405  "Invalid block length %u in channel data!\n",
1406  bd.block_length);
1407  continue;
1408  }
1409 
1410  for (c = 0; c < avctx->channels; c++) {
1411  bd.const_block = ctx->const_block + c;
1412  bd.shift_lsbs = ctx->shift_lsbs + c;
1413  bd.opt_order = ctx->opt_order + c;
1414  bd.store_prev_samples = ctx->store_prev_samples + c;
1415  bd.use_ltp = ctx->use_ltp + c;
1416  bd.ltp_lag = ctx->ltp_lag + c;
1417  bd.ltp_gain = ctx->ltp_gain[c];
1418  bd.lpc_cof = ctx->lpc_cof[c];
1419  bd.quant_cof = ctx->quant_cof[c];
1420  bd.raw_samples = ctx->raw_samples[c] + offset;
1421  bd.raw_other = NULL;
1422 
1423  if ((ret = read_block(ctx, &bd)) < 0)
1424  return ret;
1425  if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1426  return ret;
1427  }
1428 
1429  for (c = 0; c < avctx->channels; c++) {
1430  ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1431  reverted_channels, offset, c);
1432  if (ret < 0)
1433  return ret;
1434  }
1435  for (c = 0; c < avctx->channels; c++) {
1436  bd.const_block = ctx->const_block + c;
1437  bd.shift_lsbs = ctx->shift_lsbs + c;
1438  bd.opt_order = ctx->opt_order + c;
1439  bd.store_prev_samples = ctx->store_prev_samples + c;
1440  bd.use_ltp = ctx->use_ltp + c;
1441  bd.ltp_lag = ctx->ltp_lag + c;
1442  bd.ltp_gain = ctx->ltp_gain[c];
1443  bd.lpc_cof = ctx->lpc_cof[c];
1444  bd.quant_cof = ctx->quant_cof[c];
1445  bd.raw_samples = ctx->raw_samples[c] + offset;
1446  if ((ret = decode_block(ctx, &bd)) < 0)
1447  return ret;
1448  }
1449 
1450  memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1451  offset += div_blocks[b];
1452  bd.ra_block = 0;
1453  }
1454 
1455  // store carryover raw samples
1456  for (c = 0; c < avctx->channels; c++)
1457  memmove(ctx->raw_samples[c] - sconf->max_order,
1458  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1459  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1460  }
1461 
1462  // TODO: read_diff_float_data
1463 
1464  return 0;
1465 }
1466 
1467 
1470 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1471  AVPacket *avpkt)
1472 {
1473  ALSDecContext *ctx = avctx->priv_data;
1474  AVFrame *frame = data;
1475  ALSSpecificConfig *sconf = &ctx->sconf;
1476  const uint8_t *buffer = avpkt->data;
1477  int buffer_size = avpkt->size;
1478  int invalid_frame, ret;
1479  unsigned int c, sample, ra_frame, bytes_read, shift;
1480 
1481  init_get_bits(&ctx->gb, buffer, buffer_size * 8);
1482 
1483  // In the case that the distance between random access frames is set to zero
1484  // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1485  // For the first frame, if prediction is used, all samples used from the
1486  // previous frame are assumed to be zero.
1487  ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1488 
1489  // the last frame to decode might have a different length
1490  if (sconf->samples != 0xFFFFFFFF)
1491  ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1492  sconf->frame_length);
1493  else
1494  ctx->cur_frame_length = sconf->frame_length;
1495 
1496  // decode the frame data
1497  if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1498  av_log(ctx->avctx, AV_LOG_WARNING,
1499  "Reading frame data failed. Skipping RA unit.\n");
1500 
1501  ctx->frame_id++;
1502 
1503  /* get output buffer */
1504  frame->nb_samples = ctx->cur_frame_length;
1505  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
1506  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1507  return ret;
1508  }
1509 
1510  // transform decoded frame into output format
1511  #define INTERLEAVE_OUTPUT(bps) \
1512  { \
1513  int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1514  shift = bps - ctx->avctx->bits_per_raw_sample; \
1515  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1516  for (c = 0; c < avctx->channels; c++) \
1517  *dest++ = ctx->raw_samples[c][sample] << shift; \
1518  }
1519 
1520  if (ctx->avctx->bits_per_raw_sample <= 16) {
1521  INTERLEAVE_OUTPUT(16)
1522  } else {
1523  INTERLEAVE_OUTPUT(32)
1524  }
1525 
1526  // update CRC
1527  if (sconf->crc_enabled && (avctx->err_recognition & AV_EF_CRCCHECK)) {
1528  int swap = HAVE_BIGENDIAN != sconf->msb_first;
1529 
1530  if (ctx->avctx->bits_per_raw_sample == 24) {
1531  int32_t *src = (int32_t *)frame->data[0];
1532 
1533  for (sample = 0;
1534  sample < ctx->cur_frame_length * avctx->channels;
1535  sample++) {
1536  int32_t v;
1537 
1538  if (swap)
1539  v = av_bswap32(src[sample]);
1540  else
1541  v = src[sample];
1542  if (!HAVE_BIGENDIAN)
1543  v >>= 8;
1544 
1545  ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1546  }
1547  } else {
1548  uint8_t *crc_source;
1549 
1550  if (swap) {
1551  if (ctx->avctx->bits_per_raw_sample <= 16) {
1552  int16_t *src = (int16_t*) frame->data[0];
1553  int16_t *dest = (int16_t*) ctx->crc_buffer;
1554  for (sample = 0;
1555  sample < ctx->cur_frame_length * avctx->channels;
1556  sample++)
1557  *dest++ = av_bswap16(src[sample]);
1558  } else {
1559  ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1560  (uint32_t *) frame->data[0],
1561  ctx->cur_frame_length * avctx->channels);
1562  }
1563  crc_source = ctx->crc_buffer;
1564  } else {
1565  crc_source = frame->data[0];
1566  }
1567 
1568  ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1569  ctx->cur_frame_length * avctx->channels *
1571  }
1572 
1573 
1574  // check CRC sums if this is the last frame
1575  if (ctx->cur_frame_length != sconf->frame_length &&
1576  ctx->crc_org != ctx->crc) {
1577  av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1578  if (avctx->err_recognition & AV_EF_EXPLODE)
1579  return AVERROR_INVALIDDATA;
1580  }
1581  }
1582 
1583  *got_frame_ptr = 1;
1584 
1585  bytes_read = invalid_frame ? buffer_size :
1586  (get_bits_count(&ctx->gb) + 7) >> 3;
1587 
1588  return bytes_read;
1589 }
1590 
1591 
1595 {
1596  ALSDecContext *ctx = avctx->priv_data;
1597 
1598  av_freep(&ctx->sconf.chan_pos);
1599 
1600  ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1601 
1602  av_freep(&ctx->const_block);
1603  av_freep(&ctx->shift_lsbs);
1604  av_freep(&ctx->opt_order);
1606  av_freep(&ctx->use_ltp);
1607  av_freep(&ctx->ltp_lag);
1608  av_freep(&ctx->ltp_gain);
1609  av_freep(&ctx->ltp_gain_buffer);
1610  av_freep(&ctx->quant_cof);
1611  av_freep(&ctx->lpc_cof);
1612  av_freep(&ctx->quant_cof_buffer);
1613  av_freep(&ctx->lpc_cof_buffer);
1615  av_freep(&ctx->prev_raw_samples);
1616  av_freep(&ctx->raw_samples);
1617  av_freep(&ctx->raw_buffer);
1618  av_freep(&ctx->chan_data);
1619  av_freep(&ctx->chan_data_buffer);
1620  av_freep(&ctx->reverted_channels);
1621  av_freep(&ctx->crc_buffer);
1622 
1623  return 0;
1624 }
1625 
1626 
1630 {
1631  unsigned int c;
1632  unsigned int channel_size;
1633  int num_buffers, ret;
1634  ALSDecContext *ctx = avctx->priv_data;
1635  ALSSpecificConfig *sconf = &ctx->sconf;
1636  ctx->avctx = avctx;
1637 
1638  if (!avctx->extradata) {
1639  av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1640  return AVERROR_INVALIDDATA;
1641  }
1642 
1643  if ((ret = read_specific_config(ctx)) < 0) {
1644  av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1645  goto fail;
1646  }
1647 
1648  if ((ret = check_specific_config(ctx)) < 0) {
1649  goto fail;
1650  }
1651 
1652  if (sconf->bgmc) {
1653  ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1654  if (ret < 0)
1655  goto fail;
1656  }
1657  if (sconf->floating) {
1658  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1659  avctx->bits_per_raw_sample = 32;
1660  } else {
1661  avctx->sample_fmt = sconf->resolution > 1
1663  avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1664  if (avctx->bits_per_raw_sample > 32) {
1665  av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
1666  avctx->bits_per_raw_sample);
1667  ret = AVERROR_INVALIDDATA;
1668  goto fail;
1669  }
1670  }
1671 
1672  // set maximum Rice parameter for progressive decoding based on resolution
1673  // This is not specified in 14496-3 but actually done by the reference
1674  // codec RM22 revision 2.
1675  ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1676 
1677  // set lag value for long-term prediction
1678  ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
1679  (avctx->sample_rate >= 192000);
1680 
1681  // allocate quantized parcor coefficient buffer
1682  num_buffers = sconf->mc_coding ? avctx->channels : 1;
1683 
1684  ctx->quant_cof = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
1685  ctx->lpc_cof = av_malloc(sizeof(*ctx->lpc_cof) * num_buffers);
1686  ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
1687  num_buffers * sconf->max_order);
1688  ctx->lpc_cof_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
1689  num_buffers * sconf->max_order);
1690  ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
1691  sconf->max_order);
1692 
1693  if (!ctx->quant_cof || !ctx->lpc_cof ||
1694  !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
1695  !ctx->lpc_cof_reversed_buffer) {
1696  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1697  ret = AVERROR(ENOMEM);
1698  goto fail;
1699  }
1700 
1701  // assign quantized parcor coefficient buffers
1702  for (c = 0; c < num_buffers; c++) {
1703  ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
1704  ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
1705  }
1706 
1707  // allocate and assign lag and gain data buffer for ltp mode
1708  ctx->const_block = av_malloc (sizeof(*ctx->const_block) * num_buffers);
1709  ctx->shift_lsbs = av_malloc (sizeof(*ctx->shift_lsbs) * num_buffers);
1710  ctx->opt_order = av_malloc (sizeof(*ctx->opt_order) * num_buffers);
1711  ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
1712  ctx->use_ltp = av_mallocz(sizeof(*ctx->use_ltp) * num_buffers);
1713  ctx->ltp_lag = av_malloc (sizeof(*ctx->ltp_lag) * num_buffers);
1714  ctx->ltp_gain = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
1715  ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
1716  num_buffers * 5);
1717 
1718  if (!ctx->const_block || !ctx->shift_lsbs ||
1719  !ctx->opt_order || !ctx->store_prev_samples ||
1720  !ctx->use_ltp || !ctx->ltp_lag ||
1721  !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
1722  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1723  ret = AVERROR(ENOMEM);
1724  goto fail;
1725  }
1726 
1727  for (c = 0; c < num_buffers; c++)
1728  ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
1729 
1730  // allocate and assign channel data buffer for mcc mode
1731  if (sconf->mc_coding) {
1732  ctx->chan_data_buffer = av_malloc(sizeof(*ctx->chan_data_buffer) *
1733  num_buffers * num_buffers);
1734  ctx->chan_data = av_malloc(sizeof(*ctx->chan_data) *
1735  num_buffers);
1736  ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
1737  num_buffers);
1738 
1739  if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
1740  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1741  ret = AVERROR(ENOMEM);
1742  goto fail;
1743  }
1744 
1745  for (c = 0; c < num_buffers; c++)
1746  ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
1747  } else {
1748  ctx->chan_data = NULL;
1749  ctx->chan_data_buffer = NULL;
1750  ctx->reverted_channels = NULL;
1751  }
1752 
1753  channel_size = sconf->frame_length + sconf->max_order;
1754 
1755  ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
1756  ctx->raw_buffer = av_mallocz(sizeof(*ctx-> raw_buffer) * avctx->channels * channel_size);
1757  ctx->raw_samples = av_malloc (sizeof(*ctx-> raw_samples) * avctx->channels);
1758 
1759  // allocate previous raw sample buffer
1760  if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
1761  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1762  ret = AVERROR(ENOMEM);
1763  goto fail;
1764  }
1765 
1766  // assign raw samples buffers
1767  ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
1768  for (c = 1; c < avctx->channels; c++)
1769  ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
1770 
1771  // allocate crc buffer
1772  if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
1773  (avctx->err_recognition & AV_EF_CRCCHECK)) {
1774  ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
1775  ctx->cur_frame_length *
1776  avctx->channels *
1778  if (!ctx->crc_buffer) {
1779  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1780  ret = AVERROR(ENOMEM);
1781  goto fail;
1782  }
1783  }
1784 
1785  ff_bswapdsp_init(&ctx->bdsp);
1786 
1787  return 0;
1788 
1789 fail:
1790  decode_end(avctx);
1791  return ret;
1792 }
1793 
1794 
1797 static av_cold void flush(AVCodecContext *avctx)
1798 {
1799  ALSDecContext *ctx = avctx->priv_data;
1800 
1801  ctx->frame_id = 0;
1802 }
1803 
1804 
1806  .name = "als",
1807  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
1808  .type = AVMEDIA_TYPE_AUDIO,
1809  .id = AV_CODEC_ID_MP4ALS,
1810  .priv_data_size = sizeof(ALSDecContext),
1811  .init = decode_init,
1812  .close = decode_end,
1813  .decode = decode_frame,
1814  .flush = flush,
1815  .capabilities = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
1816 };
#define MUL64(a, b)
Definition: mathops.h:55
AVCodec ff_als_decoder
Definition: alsdec.c:1805
static int als_weighting(GetBitContext *gb, int k, int off)
Definition: alsdec.c:1163
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a non-constant block.
Definition: alsdec.c:856
int msb_first
1 = original CRC calculated on big-endian system, 0 = little-endian
Definition: alsdec.c:159
void * av_malloc(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:62
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:54
This structure describes decoded (raw) audio or video data.
Definition: frame.h:135
int * use_ltp
contains use_ltp flags for all channels
Definition: alsdec.c:211
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:311
av_cold void ff_bgmc_end(uint8_t **cf_lut, int **cf_lut_status)
Release the lookup table arrays.
Definition: bgmc.c:480
#define HAVE_BIGENDIAN
Definition: config.h:163
int32_t ** raw_samples
decoded raw samples for each channel
Definition: alsdec.c:224
uint8_t * crc_buffer
buffer of byte order corrected samples used for CRC check
Definition: alsdec.c:226
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:240
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:129
static const int16_t mcc_weightings[]
Inter-channel weighting factors for multi-channel correlation.
Definition: alsdec.c:118
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:199
int block_switching
number of block switching levels
Definition: alsdec.c:167
int rlslms
use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
Definition: alsdec.c:174
int size
Definition: avcodec.h:974
static int check_specific_config(ALSDecContext *ctx)
Check the ALSSpecificConfig for unsupported features.
Definition: alsdec.c:414
#define av_bswap16
Definition: bswap.h:31
int adapt_order
adaptive order: 1 = on, 0 = off
Definition: alsdec.c:163
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
Read the frame data.
Definition: alsdec.c:1324
int32_t * lpc_cof_reversed_buffer
temporary buffer to set up a reversed versio of lpc_cof_buffer
Definition: alsdec.c:219
GetBitContext gb
Definition: alsdec.c:194
Block Gilbert-Moore decoder header.
#define FF_ARRAY_ELEMS(a)
unsigned int js_switch
if true, joint-stereo decoding is enforced
Definition: alsdec.c:201
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2530
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Read and decode block data successively.
Definition: alsdec.c:1010
#define INTERLEAVE_OUTPUT(bps)
#define sample
AVCodec.
Definition: avcodec.h:2812
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
Read and decode a Rice codeword.
Definition: alsdec.c:463
static int get_sbits_long(GetBitContext *s, int n)
Read 0-32 bits as a signed integer.
Definition: get_bits.h:340
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
Definition: mem.c:198
int * ltp_lag
contains ltp lag values for all channels
Definition: alsdec.c:212
int * const_block
contains const_block flags for all channels
Definition: alsdec.c:207
av_dlog(ac->avr, "%d samples - audio_convert: %s to %s (%s)\, len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt), use_generic ? ac->func_descr_generic :ac->func_descr)
static const uint8_t ltp_gain_values[4][4]
Gain values of p(0) for long-term prediction.
Definition: alsdec.c:107
static av_cold int decode_init(AVCodecContext *avctx)
Initialize the ALS decoder.
Definition: alsdec.c:1629
static int decode(MimicContext *ctx, int quality, int num_coeffs, int is_iframe)
Definition: mimic.c:275
BswapDSPContext bdsp
Definition: alsdec.c:195
int32_t * lpc_cof
coefficients of the direct form prediction
Definition: alsdec.c:242
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1815
uint8_t
#define av_cold
Definition: attributes.h:66
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a constant block.
Definition: alsdec.c:579
float delta
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:297
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
int ** ltp_gain
gain values for ltp 5-tap filter for a channel
Definition: alsdec.c:213
#define b
Definition: input.c:52
static void read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a constant block.
Definition: alsdec.c:554
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1164
int chan_sort
channel rearrangement: 1 = on, 0 = off
Definition: alsdec.c:173
#define CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:684
int joint_stereo
joint stereo: 1 = on, 0 = off
Definition: alsdec.c:170
const char data[16]
Definition: mxf.c:70
uint8_t * data
Definition: avcodec.h:973
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:194
bitstream reader API header.
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks independently.
Definition: alsdec.c:1039
void ff_bgmc_decode_init(GetBitContext *gb, unsigned int *h, unsigned int *l, unsigned int *v)
Initialize decoding and reads the first value.
Definition: bgmc.c:488
unsigned int block_length
number of samples within the block
Definition: alsdec.c:231
static void zero_remaining(unsigned int b, unsigned int b_max, const unsigned int *div_blocks, int32_t *buf)
Compute the number of samples left to decode for the current frame and sets these samples to zero...
Definition: alsdec.c:1024
int ra_distance
distance between RA frames (in frames, 0...255)
Definition: alsdec.c:161
int weighting[6]
Definition: alsdec.c:187
int32_t * quant_cof_buffer
contains all quantized parcor coefficients
Definition: alsdec.c:216
signed 32 bits
Definition: samplefmt.h:65
ALSChannelData * chan_data_buffer
contains channel data for all channels
Definition: alsdec.c:221
#define r
Definition: input.c:51
int bgmc
"Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
Definition: alsdec.c:168
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:555
int * use_ltp
if true, long-term prediction is used
Definition: alsdec.c:238
enum RA_Flag ra_flag
indicates where the size of ra units is stored
Definition: alsdec.c:162
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
int ltp_lag_length
number of bits used for ltp lag value
Definition: alsdec.c:206
#define AVERROR(e)
Definition: error.h:43
static av_cold void dprint_specific_config(ALSDecContext *ctx)
Definition: alsdec.c:249
unsigned int * opt_order
prediction order of this block
Definition: alsdec.c:236
int * chan_pos
original channel positions
Definition: alsdec.c:176
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:145
AVCodecContext * avctx
Definition: alsdec.c:192
static const int16_t parcor_scaled_values[]
Scaled PARCOR values used for the first two PARCOR coefficients.
Definition: alsdec.c:68
int32_t ** lpc_cof
coefficients of the direct form prediction filter for a channel
Definition: alsdec.c:217
int chan_config_info
mapping of channels to loudspeaker locations. Unused until setting channel configuration is implement...
Definition: alsdec.c:175
unsigned int num_blocks
number of blocks used in the current frame
Definition: alsdec.c:202
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:169
const char * name
Name of the codec implementation.
Definition: avcodec.h:2819
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:223
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks dependently.
Definition: alsdec.c:1079
void ff_bgmc_decode_end(GetBitContext *gb)
Finish decoding.
Definition: bgmc.c:498
const AVCRC * crc_table
Definition: alsdec.c:196
#define FFMAX(a, b)
Definition: common.h:55
int * bgmc_lut_status
pointer at lookup table status flags used for BGMC
Definition: alsdec.c:205
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
ALSSpecificConfig sconf
Definition: alsdec.c:193
int * store_prev_samples
if true, carryover samples have to be stored
Definition: alsdec.c:237
unsigned int * shift_lsbs
contains shift_lsbs flags for all channels
Definition: alsdec.c:208
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2422
#define FFMIN(a, b)
Definition: common.h:57
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a non-constant block.
Definition: alsdec.c:593
int chan_config
indicates that a chan_config_info field is present
Definition: alsdec.c:172
int32_t
static char buffer[20]
Definition: seek-test.c:31
void ff_bgmc_decode(GetBitContext *gb, unsigned int num, int32_t *dst, int delta, unsigned int sx, unsigned int *h, unsigned int *l, unsigned int *v, uint8_t *cf_lut, int *cf_lut_status)
Read and decode a block Gilbert-Moore coded symbol.
Definition: bgmc.c:505
static av_cold int decode_end(AVCodecContext *avctx)
Uninitialize the ALS decoder.
Definition: alsdec.c:1594
int * const_block
if true, this is a constant value block
Definition: alsdec.c:233
#define AV_EF_EXPLODE
Definition: avcodec.h:2433
int floating
1 = IEEE 32-bit floating-point, 0 = integer
Definition: alsdec.c:158
int time_diff_flag
Definition: alsdec.c:184
int master_channel
Definition: alsdec.c:183
uint32_t crc
CRC value calculated from decoded data.
Definition: alsdec.c:198
int coef_table
table index of Rice code parameters
Definition: alsdec.c:164
int sb_part
sub-block partition
Definition: alsdec.c:169
int32_t * raw_other
decoded raw samples of the other channel of a channel pair
Definition: alsdec.c:245
if(ac->has_optimized_func)
uint8_t * bgmc_lut
pointer at lookup tables used for BGMC
Definition: alsdec.c:204
#define AVERROR_PATCHWELCOME
Not yet implemented in Libav, patches welcome.
Definition: error.h:57
int * ltp_gain
gain values for ltp 5-tap filter
Definition: alsdec.c:240
NULL
Definition: eval.c:55
int js_blocks
true if this block contains a difference signal
Definition: alsdec.c:234
#define av_bswap32
Definition: bswap.h:33
unsigned int ra_block
if true, this is a random access block
Definition: alsdec.c:232
Libavcodec external API header.
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
Convert PARCOR coefficient k to direct filter coefficient.
Definition: alsdec.c:481
int sample_rate
samples per second
Definition: avcodec.h:1807
main external API structure.
Definition: avcodec.h:1050
static void close(AVCodecParserContext *s)
Definition: h264_parser.c:490
ALSChannelData ** chan_data
channel data for multi-channel correlation
Definition: alsdec.c:220
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Decode an ALS frame.
Definition: alsdec.c:1470
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:612
#define MISSING_ERR(cond, str, errval)
int extradata_size
Definition: avcodec.h:1165
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:271
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:296
unsigned int s_max
maximum Rice parameter allowed in entropy coding
Definition: alsdec.c:203
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:263
int * ltp_lag
lag value for long-term prediction
Definition: alsdec.c:239
int32_t * lpc_cof_buffer
contains all coefficients of the direct form prediction filter
Definition: alsdec.c:218
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:375
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
Definition: avcodec.h:2430
static const int8_t parcor_rice_table[3][20][2]
Rice parameters and corresponding index offsets for decoding the indices of scaled PARCOR values...
Definition: alsdec.c:47
RA_Flag
Definition: alsdec.c:148
static av_cold int read_specific_config(ALSDecContext *ctx)
Read an ALSSpecificConfig from a buffer into the output struct.
Definition: alsdec.c:279
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:304
int long_term_prediction
long term prediction (LTP): 1 = on, 0 = off
Definition: alsdec.c:165
int32_t * raw_samples
decoded raw samples / residuals for this block
Definition: alsdec.c:243
int * reverted_channels
stores a flag for each reverted channel
Definition: alsdec.c:222
unsigned int * opt_order
contains opt_order flags for all channels
Definition: alsdec.c:209
int32_t * raw_buffer
contains all decoded raw samples including carryover samples
Definition: alsdec.c:225
int max_order
maximum prediction order (0..1023)
Definition: alsdec.c:166
uint32_t samples
number of samples, 0xFFFFFFFF if unknown
Definition: alsdec.c:156
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:141
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:95
#define CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:736
int mc_coding
extended inter-channel coding (multi channel coding): 1 = on, 0 = off
Definition: alsdec.c:171
static const uint8_t tail_code[16][6]
Tail codes used in arithmetic coding using block Gilbert-Moore codes.
Definition: alsdec.c:128
common internal api header.
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:244
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:33
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:1797
signed 16 bits
Definition: samplefmt.h:64
int time_diff_index
Definition: alsdec.c:186
int * ltp_gain_buffer
contains all gain values for ltp 5-tap filter
Definition: alsdec.c:214
int32_t * quant_cof
quantized parcor coefficients
Definition: alsdec.c:241
uint32_t AVCRC
Definition: crc.h:28
static av_cold int init(AVCodecParserContext *s)
Definition: h264_parser.c:499
int avpriv_mpeg4audio_get_config(MPEG4AudioConfig *c, const uint8_t *buf, int bit_size, int sync_extension)
Parse MPEG-4 systems extradata to retrieve audio configuration.
Definition: mpeg4audio.c:79
#define MKBETAG(a, b, c, d)
Definition: common.h:239
static void parse_bs_info(const uint32_t bs_info, unsigned int n, unsigned int div, unsigned int **div_blocks, unsigned int *num_blocks)
Parse the bs_info field to extract the block partitioning used in block switching mode...
Definition: alsdec.c:440
void * priv_data
Definition: avcodec.h:1092
int32_t ** quant_cof
quantized parcor coefficients for a channel
Definition: alsdec.c:215
int channels
number of audio channels
Definition: avcodec.h:1808
int crc_enabled
enable Cyclic Redundancy Checksum
Definition: alsdec.c:177
uint32_t crc_org
CRC value of the original input data.
Definition: alsdec.c:197
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data.
Definition: alsdec.c:984
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data.
Definition: alsdec.c:965
int frame_length
frame length for each frame (last frame may differ)
Definition: alsdec.c:160
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:416
int stop_flag
Definition: alsdec.c:182
static const struct twinvq_data tab
unsigned int * shift_lsbs
shift of values for this block
Definition: alsdec.c:235
av_cold int ff_bgmc_init(AVCodecContext *avctx, uint8_t **cf_lut, int **cf_lut_status)
Initialize the lookup table arrays.
Definition: bgmc.c:460
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
Read the channel data.
Definition: alsdec.c:1172
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, uint32_t *bs_info)
Read block switching field if necessary and set actual block sizes.
Definition: alsdec.c:501
int * store_prev_samples
contains store_prev_samples flags for all channels
Definition: alsdec.c:210
unsigned int frame_id
the frame ID / number of the current frame
Definition: alsdec.c:200
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, ALSChannelData **cd, int *reverted, unsigned int offset, int c)
Recursively reverts the inter-channel correlation for a block.
Definition: alsdec.c:1219
This structure stores compressed data.
Definition: avcodec.h:950
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:179
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:205
for(j=16;j >0;--j)
unsigned int cur_frame_length
length of the current frame to decode
Definition: alsdec.c:199
int resolution
000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
Definition: alsdec.c:157
int time_diff_sign
Definition: alsdec.c:185