Primitive Type u64 []

The 64-bit unsigned integer type.

See also the std::u64 module.

Methods

impl u64

1.0.0fn min_value() -> u64

Returns the smallest value that can be represented by this integer type.

1.0.0fn max_value() -> u64

Returns the largest value that can be represented by this integer type.

1.0.0fn from_str_radix(src: &str, radix: u32) -> Result<u64, ParseIntError>

Converts a string slice in a given base to an integer.

Leading and trailing whitespace represent an error.

Arguments

  • src - A string slice
  • radix - The base to use. Must lie in the range [2 .. 36]

Return value

Err(ParseIntError) if the string did not represent a valid number. Otherwise, Ok(n) where n is the integer represented by src.

1.0.0fn count_ones(self) -> u32

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b01001100u8; assert_eq!(n.count_ones(), 3); }
let n = 0b01001100u8;

assert_eq!(n.count_ones(), 3);

1.0.0fn count_zeros(self) -> u32

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b01001100u8; assert_eq!(n.count_zeros(), 5); }
let n = 0b01001100u8;

assert_eq!(n.count_zeros(), 5);

1.0.0fn leading_zeros(self) -> u32

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b0101000u16; assert_eq!(n.leading_zeros(), 10); }
let n = 0b0101000u16;

assert_eq!(n.leading_zeros(), 10);

1.0.0fn trailing_zeros(self) -> u32

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b0101000u16; assert_eq!(n.trailing_zeros(), 3); }
let n = 0b0101000u16;

assert_eq!(n.trailing_zeros(), 3);

1.0.0fn rotate_left(self, n: u32) -> u64

Shifts the bits to the left by a specified amount, n, wrapping the truncated bits to the end of the resulting integer.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0x3456789ABCDEF012u64; assert_eq!(n.rotate_left(12), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0x3456789ABCDEF012u64;

assert_eq!(n.rotate_left(12), m);

1.0.0fn rotate_right(self, n: u32) -> u64

Shifts the bits to the right by a specified amount, n, wrapping the truncated bits to the beginning of the resulting integer.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xDEF0123456789ABCu64; assert_eq!(n.rotate_right(12), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0xDEF0123456789ABCu64;

assert_eq!(n.rotate_right(12), m);

1.0.0fn swap_bytes(self) -> u64

Reverses the byte order of the integer.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xEFCDAB8967452301u64; assert_eq!(n.swap_bytes(), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0xEFCDAB8967452301u64;

assert_eq!(n.swap_bytes(), m);

1.0.0fn from_be(x: u64) -> u64

Converts an integer from big endian to the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(u64::from_be(n), n) } else { assert_eq!(u64::from_be(n), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "big") {
    assert_eq!(u64::from_be(n), n)
} else {
    assert_eq!(u64::from_be(n), n.swap_bytes())
}

1.0.0fn from_le(x: u64) -> u64

Converts an integer from little endian to the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(u64::from_le(n), n) } else { assert_eq!(u64::from_le(n), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "little") {
    assert_eq!(u64::from_le(n), n)
} else {
    assert_eq!(u64::from_le(n), n.swap_bytes())
}

1.0.0fn to_be(self) -> u64

Converts self to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}

1.0.0fn to_le(self) -> u64

Converts self to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}

1.0.0fn checked_add(self, other: u64) -> Option<u64>

Checked integer addition. Computes self + other, returning None if overflow occurred.

Examples

Basic usage:

fn main() { assert_eq!(5u16.checked_add(65530), Some(65535)); assert_eq!(6u16.checked_add(65530), None); }
assert_eq!(5u16.checked_add(65530), Some(65535));
assert_eq!(6u16.checked_add(65530), None);

1.0.0fn checked_sub(self, other: u64) -> Option<u64>

Checked integer subtraction. Computes self - other, returning None if underflow occurred.

Examples

Basic usage:

fn main() { assert_eq!(1u8.checked_sub(1), Some(0)); assert_eq!(0u8.checked_sub(1), None); }
assert_eq!(1u8.checked_sub(1), Some(0));
assert_eq!(0u8.checked_sub(1), None);

1.0.0fn checked_mul(self, other: u64) -> Option<u64>

Checked integer multiplication. Computes self * other, returning None if underflow or overflow occurred.

Examples

Basic usage:

fn main() { assert_eq!(5u8.checked_mul(51), Some(255)); assert_eq!(5u8.checked_mul(52), None); }
assert_eq!(5u8.checked_mul(51), Some(255));
assert_eq!(5u8.checked_mul(52), None);

1.0.0fn checked_div(self, other: u64) -> Option<u64>

Checked integer division. Computes self / other, returning None if other == 0 or the operation results in underflow or overflow.

Examples

Basic usage:

fn main() { assert_eq!(128u8.checked_div(2), Some(64)); assert_eq!(1u8.checked_div(0), None); }
assert_eq!(128u8.checked_div(2), Some(64));
assert_eq!(1u8.checked_div(0), None);

1.7.0fn checked_rem(self, other: u64) -> Option<u64>

Checked integer remainder. Computes self % other, returning None if other == 0 or the operation results in underflow or overflow.

Examples

Basic usage:

fn main() { assert_eq!(5u32.checked_rem(2), Some(1)); assert_eq!(5u32.checked_rem(0), None); }
assert_eq!(5u32.checked_rem(2), Some(1));
assert_eq!(5u32.checked_rem(0), None);

1.7.0fn checked_neg(self) -> Option<u64>

Checked negation. Computes -self, returning None unless self == 0.

Note that negating any positive integer will overflow.

Examples

Basic usage:

fn main() { assert_eq!(0u32.checked_neg(), Some(0)); assert_eq!(1u32.checked_neg(), None); }
assert_eq!(0u32.checked_neg(), Some(0));
assert_eq!(1u32.checked_neg(), None);

1.7.0fn checked_shl(self, rhs: u32) -> Option<u64>

Checked shift left. Computes self << rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

fn main() { assert_eq!(0x10u32.checked_shl(4), Some(0x100)); assert_eq!(0x10u32.checked_shl(33), None); }
assert_eq!(0x10u32.checked_shl(4), Some(0x100));
assert_eq!(0x10u32.checked_shl(33), None);

1.7.0fn checked_shr(self, rhs: u32) -> Option<u64>

Checked shift right. Computes self >> rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

fn main() { assert_eq!(0x10u32.checked_shr(4), Some(0x1)); assert_eq!(0x10u32.checked_shr(33), None); }
assert_eq!(0x10u32.checked_shr(4), Some(0x1));
assert_eq!(0x10u32.checked_shr(33), None);

1.0.0fn saturating_add(self, other: u64) -> u64

Saturating integer addition. Computes self + other, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

fn main() { assert_eq!(100u8.saturating_add(1), 101); assert_eq!(200u8.saturating_add(127), 255); }
assert_eq!(100u8.saturating_add(1), 101);
assert_eq!(200u8.saturating_add(127), 255);

1.0.0fn saturating_sub(self, other: u64) -> u64

Saturating integer subtraction. Computes self - other, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

fn main() { assert_eq!(100u8.saturating_sub(27), 73); assert_eq!(13u8.saturating_sub(127), 0); }
assert_eq!(100u8.saturating_sub(27), 73);
assert_eq!(13u8.saturating_sub(127), 0);

1.7.0fn saturating_mul(self, other: u64) -> u64

Saturating integer multiplication. Computes self * other, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

fn main() { use std::u32; assert_eq!(100u32.saturating_mul(127), 12700); assert_eq!((1u32 << 23).saturating_mul(1 << 23), u32::MAX); }
use std::u32;

assert_eq!(100u32.saturating_mul(127), 12700);
assert_eq!((1u32 << 23).saturating_mul(1 << 23), u32::MAX);

1.0.0fn wrapping_add(self, rhs: u64) -> u64

Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of the type.

Examples

Basic usage:

fn main() { assert_eq!(200u8.wrapping_add(55), 255); assert_eq!(200u8.wrapping_add(155), 99); }
assert_eq!(200u8.wrapping_add(55), 255);
assert_eq!(200u8.wrapping_add(155), 99);

1.0.0fn wrapping_sub(self, rhs: u64) -> u64

Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary of the type.

Examples

Basic usage:

fn main() { assert_eq!(100u8.wrapping_sub(100), 0); assert_eq!(100u8.wrapping_sub(155), 201); }
assert_eq!(100u8.wrapping_sub(100), 0);
assert_eq!(100u8.wrapping_sub(155), 201);

1.0.0fn wrapping_mul(self, rhs: u64) -> u64

Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary of the type.

Examples

Basic usage:

fn main() { assert_eq!(10u8.wrapping_mul(12), 120); assert_eq!(25u8.wrapping_mul(12), 44); }
assert_eq!(10u8.wrapping_mul(12), 120);
assert_eq!(25u8.wrapping_mul(12), 44);

1.2.0fn wrapping_div(self, rhs: u64) -> u64

Wrapping (modular) division. Computes self / other. Wrapped division on unsigned types is just normal division. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Examples

Basic usage:

fn main() { assert_eq!(100u8.wrapping_div(10), 10); }
assert_eq!(100u8.wrapping_div(10), 10);

1.2.0fn wrapping_rem(self, rhs: u64) -> u64

Wrapping (modular) remainder. Computes self % other. Wrapped remainder calculation on unsigned types is just the regular remainder calculation. There's no way wrapping could ever happen. This function exists, so that all operations are accounted for in the wrapping operations.

Examples

Basic usage:

fn main() { assert_eq!(100i8.wrapping_rem(10), 0); }
assert_eq!(100i8.wrapping_rem(10), 0);

1.2.0fn wrapping_neg(self) -> u64

Wrapping (modular) negation. Computes -self, wrapping around at the boundary of the type.

Since unsigned types do not have negative equivalents all applications of this function will wrap (except for -0). For values smaller than the corresponding signed type's maximum the result is the same as casting the corresponding signed value. Any larger values are equivalent to MAX + 1 - (val - MAX - 1) where MAX is the corresponding signed type's maximum.

Examples

Basic usage:

fn main() { assert_eq!(100u8.wrapping_neg(), 156); assert_eq!(0u8.wrapping_neg(), 0); assert_eq!(180u8.wrapping_neg(), 76); assert_eq!(180u8.wrapping_neg(), (127 + 1) - (180u8 - (127 + 1))); }
assert_eq!(100u8.wrapping_neg(), 156);
assert_eq!(0u8.wrapping_neg(), 0);
assert_eq!(180u8.wrapping_neg(), 76);
assert_eq!(180u8.wrapping_neg(), (127 + 1) - (180u8 - (127 + 1)));

1.2.0fn wrapping_shl(self, rhs: u32) -> u64

Panic-free bitwise shift-left; yields self << mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Examples

Basic usage:

fn main() { assert_eq!(1u8.wrapping_shl(7), 128); assert_eq!(1u8.wrapping_shl(8), 1); }
assert_eq!(1u8.wrapping_shl(7), 128);
assert_eq!(1u8.wrapping_shl(8), 1);

1.2.0fn wrapping_shr(self, rhs: u32) -> u64

Panic-free bitwise shift-right; yields self >> mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Examples

Basic usage:

fn main() { assert_eq!(128u8.wrapping_shr(7), 1); assert_eq!(128u8.wrapping_shr(8), 128); }
assert_eq!(128u8.wrapping_shr(7), 1);
assert_eq!(128u8.wrapping_shr(8), 128);

1.7.0fn overflowing_add(self, rhs: u64) -> (u64, bool)

Calculates self + rhs

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

fn main() { use std::u32; assert_eq!(5u32.overflowing_add(2), (7, false)); assert_eq!(u32::MAX.overflowing_add(1), (0, true)); }
use std::u32;

assert_eq!(5u32.overflowing_add(2), (7, false));
assert_eq!(u32::MAX.overflowing_add(1), (0, true));

1.7.0fn overflowing_sub(self, rhs: u64) -> (u64, bool)

Calculates self - rhs

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

fn main() { use std::u32; assert_eq!(5u32.overflowing_sub(2), (3, false)); assert_eq!(0u32.overflowing_sub(1), (u32::MAX, true)); }
use std::u32;

assert_eq!(5u32.overflowing_sub(2), (3, false));
assert_eq!(0u32.overflowing_sub(1), (u32::MAX, true));

1.7.0fn overflowing_mul(self, rhs: u64) -> (u64, bool)

Calculates the multiplication of self and rhs.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

fn main() { assert_eq!(5u32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true)); }
assert_eq!(5u32.overflowing_mul(2), (10, false));
assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));

1.7.0fn overflowing_div(self, rhs: u64) -> (u64, bool)

Calculates the divisor when self is divided by rhs.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false.

Panics

This function will panic if rhs is 0.

Examples

Basic usage

fn main() { assert_eq!(5u32.overflowing_div(2), (2, false)); }
assert_eq!(5u32.overflowing_div(2), (2, false));

1.7.0fn overflowing_rem(self, rhs: u64) -> (u64, bool)

Calculates the remainder when self is divided by rhs.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. Note that for unsigned integers overflow never occurs, so the second value is always false.

Panics

This function will panic if rhs is 0.

Examples

Basic usage

fn main() { assert_eq!(5u32.overflowing_rem(2), (1, false)); }
assert_eq!(5u32.overflowing_rem(2), (1, false));

1.7.0fn overflowing_neg(self) -> (u64, bool)

Negates self in an overflowing fashion.

Returns !self + 1 using wrapping operations to return the value that represents the negation of this unsigned value. Note that for positive unsigned values overflow always occurs, but negating 0 does not overflow.

Examples

Basic usage

fn main() { assert_eq!(0u32.overflowing_neg(), (0, false)); assert_eq!(2u32.overflowing_neg(), (-2i32 as u32, true)); }
assert_eq!(0u32.overflowing_neg(), (0, false));
assert_eq!(2u32.overflowing_neg(), (-2i32 as u32, true));

1.7.0fn overflowing_shl(self, rhs: u32) -> (u64, bool)

Shifts self left by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage

fn main() { assert_eq!(0x10u32.overflowing_shl(4), (0x100, false)); assert_eq!(0x10u32.overflowing_shl(36), (0x100, true)); }
assert_eq!(0x10u32.overflowing_shl(4), (0x100, false));
assert_eq!(0x10u32.overflowing_shl(36), (0x100, true));

1.7.0fn overflowing_shr(self, rhs: u32) -> (u64, bool)

Shifts self right by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage

fn main() { assert_eq!(0x10u32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10u32.overflowing_shr(36), (0x1, true)); }
assert_eq!(0x10u32.overflowing_shr(4), (0x1, false));
assert_eq!(0x10u32.overflowing_shr(36), (0x1, true));

1.0.0fn pow(self, exp: u32) -> u64

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

fn main() { assert_eq!(2u32.pow(4), 16); }
assert_eq!(2u32.pow(4), 16);

1.0.0fn is_power_of_two(self) -> bool

Returns true if and only if self == 2^k for some k.

Examples

Basic usage:

fn main() { assert!(16u8.is_power_of_two()); assert!(!10u8.is_power_of_two()); }
assert!(16u8.is_power_of_two());
assert!(!10u8.is_power_of_two());

1.0.0fn next_power_of_two(self) -> u64

Returns the smallest power of two greater than or equal to self. Unspecified behavior on overflow.

Examples

Basic usage:

fn main() { assert_eq!(2u8.next_power_of_two(), 2); assert_eq!(3u8.next_power_of_two(), 4); }
assert_eq!(2u8.next_power_of_two(), 2);
assert_eq!(3u8.next_power_of_two(), 4);

1.0.0fn checked_next_power_of_two(self) -> Option<u64>

Returns the smallest power of two greater than or equal to n. If the next power of two is greater than the type's maximum value, None is returned, otherwise the power of two is wrapped in Some.

Examples

Basic usage:

fn main() { assert_eq!(2u8.checked_next_power_of_two(), Some(2)); assert_eq!(3u8.checked_next_power_of_two(), Some(4)); assert_eq!(200u8.checked_next_power_of_two(), None); }
assert_eq!(2u8.checked_next_power_of_two(), Some(2));
assert_eq!(3u8.checked_next_power_of_two(), Some(4));
assert_eq!(200u8.checked_next_power_of_two(), None);

Trait Implementations

impl OverflowingOps for u64

fn overflowing_add(self, rhs: u64) -> (u64, bool)

fn overflowing_sub(self, rhs: u64) -> (u64, bool)

fn overflowing_mul(self, rhs: u64) -> (u64, bool)

fn overflowing_div(self, rhs: u64) -> (u64, bool)

fn overflowing_rem(self, rhs: u64) -> (u64, bool)

fn overflowing_shl(self, rhs: u32) -> (u64, bool)

fn overflowing_shr(self, rhs: u32) -> (u64, bool)

fn overflowing_neg(self) -> (u64, bool)

impl Zero for u64

fn zero() -> u64

impl One for u64

fn one() -> u64

impl FromStr for u641.0.0

type Err = ParseIntError

fn from_str(src: &str) -> Result<u64, ParseIntError>

impl From<u8> for u641.5.0

fn from(small: u8) -> u64

impl From<u16> for u641.5.0

fn from(small: u16) -> u64

impl From<u32> for u641.5.0

fn from(small: u32) -> u64

impl Zeroable for u64

impl Add<u64> for u641.0.0

type Output = u64

fn add(self, other: u64) -> u64

impl<'a> Add<u64> for &'a u641.0.0

type Output = u64::Output

fn add(self, other: u64) -> u64::Output

impl<'a> Add<&'a u64> for u641.0.0

type Output = u64::Output

fn add(self, other: &'a u64) -> u64::Output

impl<'a, 'b> Add<&'a u64> for &'b u641.0.0

type Output = u64::Output

fn add(self, other: &'a u64) -> u64::Output

impl Sub<u64> for u641.0.0

type Output = u64

fn sub(self, other: u64) -> u64

impl<'a> Sub<u64> for &'a u641.0.0

type Output = u64::Output

fn sub(self, other: u64) -> u64::Output

impl<'a> Sub<&'a u64> for u641.0.0

type Output = u64::Output

fn sub(self, other: &'a u64) -> u64::Output

impl<'a, 'b> Sub<&'a u64> for &'b u641.0.0

type Output = u64::Output

fn sub(self, other: &'a u64) -> u64::Output

impl Mul<u64> for u641.0.0

type Output = u64

fn mul(self, other: u64) -> u64

impl<'a> Mul<u64> for &'a u641.0.0

type Output = u64::Output

fn mul(self, other: u64) -> u64::Output

impl<'a> Mul<&'a u64> for u641.0.0

type Output = u64::Output

fn mul(self, other: &'a u64) -> u64::Output

impl<'a, 'b> Mul<&'a u64> for &'b u641.0.0

type Output = u64::Output

fn mul(self, other: &'a u64) -> u64::Output

impl Div<u64> for u641.0.0

This operation rounds towards zero, truncating any fractional part of the exact result.

type Output = u64

fn div(self, other: u64) -> u64

impl<'a> Div<u64> for &'a u641.0.0

type Output = u64::Output

fn div(self, other: u64) -> u64::Output

impl<'a> Div<&'a u64> for u641.0.0

type Output = u64::Output

fn div(self, other: &'a u64) -> u64::Output

impl<'a, 'b> Div<&'a u64> for &'b u641.0.0

type Output = u64::Output

fn div(self, other: &'a u64) -> u64::Output

impl Rem<u64> for u641.0.0

This operation satisfies n % d == n - (n / d) * d. The result has the same sign as the left operand.

type Output = u64

fn rem(self, other: u64) -> u64

impl<'a> Rem<u64> for &'a u641.0.0

type Output = u64::Output

fn rem(self, other: u64) -> u64::Output

impl<'a> Rem<&'a u64> for u641.0.0

type Output = u64::Output

fn rem(self, other: &'a u64) -> u64::Output

impl<'a, 'b> Rem<&'a u64> for &'b u641.0.0

type Output = u64::Output

fn rem(self, other: &'a u64) -> u64::Output

impl Not for u641.0.0

type Output = u64

fn not(self) -> u64

impl<'a> Not for &'a u641.0.0

type Output = u64::Output

fn not(self) -> u64::Output

impl BitAnd<u64> for u641.0.0

type Output = u64

fn bitand(self, rhs: u64) -> u64

impl<'a> BitAnd<u64> for &'a u641.0.0

type Output = u64::Output

fn bitand(self, other: u64) -> u64::Output

impl<'a> BitAnd<&'a u64> for u641.0.0

type Output = u64::Output

fn bitand(self, other: &'a u64) -> u64::Output

impl<'a, 'b> BitAnd<&'a u64> for &'b u641.0.0

type Output = u64::Output

fn bitand(self, other: &'a u64) -> u64::Output

impl BitOr<u64> for u641.0.0

type Output = u64

fn bitor(self, rhs: u64) -> u64

impl<'a> BitOr<u64> for &'a u641.0.0

type Output = u64::Output

fn bitor(self, other: u64) -> u64::Output

impl<'a> BitOr<&'a u64> for u641.0.0

type Output = u64::Output

fn bitor(self, other: &'a u64) -> u64::Output

impl<'a, 'b> BitOr<&'a u64> for &'b u641.0.0

type Output = u64::Output

fn bitor(self, other: &'a u64) -> u64::Output

impl BitXor<u64> for u641.0.0

type Output = u64

fn bitxor(self, other: u64) -> u64

impl<'a> BitXor<u64> for &'a u641.0.0

type Output = u64::Output

fn bitxor(self, other: u64) -> u64::Output

impl<'a> BitXor<&'a u64> for u641.0.0

type Output = u64::Output

fn bitxor(self, other: &'a u64) -> u64::Output

impl<'a, 'b> BitXor<&'a u64> for &'b u641.0.0

type Output = u64::Output

fn bitxor(self, other: &'a u64) -> u64::Output

impl Shl<u8> for u641.0.0

type Output = u64

fn shl(self, other: u8) -> u64

impl<'a> Shl<u8> for &'a u641.0.0

type Output = u64::Output

fn shl(self, other: u8) -> u64::Output

impl<'a> Shl<&'a u8> for u641.0.0

type Output = u64::Output

fn shl(self, other: &'a u8) -> u64::Output

impl<'a, 'b> Shl<&'a u8> for &'b u641.0.0

type Output = u64::Output

fn shl(self, other: &'a u8) -> u64::Output

impl Shl<u16> for u641.0.0

type Output = u64

fn shl(self, other: u16) -> u64

impl<'a> Shl<u16> for &'a u641.0.0

type Output = u64::Output

fn shl(self, other: u16) -> u64::Output

impl<'a> Shl<&'a u16> for u641.0.0

type Output = u64::Output

fn shl(self, other: &'a u16) -> u64::Output

impl<'a, 'b> Shl<&'a u16> for &'b u641.0.0

type Output = u64::Output

fn shl(self, other: &'a u16) -> u64::Output

impl Shl<u32> for u641.0.0

type Output = u64

fn shl(self, other: u32) -> u64

impl<'a> Shl<u32> for &'a u641.0.0

type Output = u64::Output

fn shl(self, other: u32) -> u64::Output

impl<'a> Shl<&'a u32> for u641.0.0

type Output = u64::Output

fn shl(self, other: &'a u32) -> u64::Output

impl<'a, 'b> Shl<&'a u32> for &'b u641.0.0

type Output = u64::Output

fn shl(self, other: &'a u32) -> u64::Output

impl Shl<u64> for u641.0.0

type Output = u64

fn shl(self, other: u64) -> u64

impl<'a> Shl<u64> for &'a u641.0.0

type Output = u64::Output

fn shl(self, other: u64) -> u64::Output

impl<'a> Shl<&'a u64> for u641.0.0

type Output = u64::Output

fn shl(self, other: &'a u64) -> u64::Output

impl<'a, 'b> Shl<&'a u64> for &'b u641.0.0

type Output = u64::Output

fn shl(self, other: &'a u64) -> u64::Output

impl Shl<usize> for u641.0.0

type Output = u64

fn shl(self, other: usize) -> u64

impl<'a> Shl<usize> for &'a u641.0.0

type Output = u64::Output

fn shl(self, other: usize) -> u64::Output

impl<'a> Shl<&'a usize> for u641.0.0

type Output = u64::Output

fn shl(self, other: &'a usize) -> u64::Output

impl<'a, 'b> Shl<&'a usize> for &'b u641.0.0

type Output = u64::Output

fn shl(self, other: &'a usize) -> u64::Output

impl Shl<i8> for u641.0.0

type Output = u64

fn shl(self, other: i8) -> u64

impl<'a> Shl<i8> for &'a u641.0.0

type Output = u64::Output

fn shl(self, other: i8) -> u64::Output

impl<'a> Shl<&'a i8> for u641.0.0

type Output = u64::Output

fn shl(self, other: &'a i8) -> u64::Output

impl<'a, 'b> Shl<&'a i8> for &'b u641.0.0

type Output = u64::Output

fn shl(self, other: &'a i8) -> u64::Output

impl Shl<i16> for u641.0.0

type Output = u64

fn shl(self, other: i16) -> u64

impl<'a> Shl<i16> for &'a u641.0.0

type Output = u64::Output

fn shl(self, other: i16) -> u64::Output

impl<'a> Shl<&'a i16> for u641.0.0

type Output = u64::Output

fn shl(self, other: &'a i16) -> u64::Output

impl<'a, 'b> Shl<&'a i16> for &'b u641.0.0

type Output = u64::Output

fn shl(self, other: &'a i16) -> u64::Output

impl Shl<i32> for u641.0.0

type Output = u64

fn shl(self, other: i32) -> u64

impl<'a> Shl<i32> for &'a u641.0.0

type Output = u64::Output

fn shl(self, other: i32) -> u64::Output

impl<'a> Shl<&'a i32> for u641.0.0

type Output = u64::Output

fn shl(self, other: &'a i32) -> u64::Output

impl<'a, 'b> Shl<&'a i32> for &'b u641.0.0

type Output = u64::Output

fn shl(self, other: &'a i32) -> u64::Output

impl Shl<i64> for u641.0.0

type Output = u64

fn shl(self, other: i64) -> u64

impl<'a> Shl<i64> for &'a u641.0.0

type Output = u64::Output

fn shl(self, other: i64) -> u64::Output

impl<'a> Shl<&'a i64> for u641.0.0

type Output = u64::Output

fn shl(self, other: &'a i64) -> u64::Output

impl<'a, 'b> Shl<&'a i64> for &'b u641.0.0

type Output = u64::Output

fn shl(self, other: &'a i64) -> u64::Output

impl Shl<isize> for u641.0.0

type Output = u64

fn shl(self, other: isize) -> u64

impl<'a> Shl<isize> for &'a u641.0.0

type Output = u64::Output

fn shl(self, other: isize) -> u64::Output

impl<'a> Shl<&'a isize> for u641.0.0

type Output = u64::Output

fn shl(self, other: &'a isize) -> u64::Output

impl<'a, 'b> Shl<&'a isize> for &'b u641.0.0

type Output = u64::Output

fn shl(self, other: &'a isize) -> u64::Output

impl Shr<u8> for u641.0.0

type Output = u64

fn shr(self, other: u8) -> u64

impl<'a> Shr<u8> for &'a u641.0.0

type Output = u64::Output

fn shr(self, other: u8) -> u64::Output

impl<'a> Shr<&'a u8> for u641.0.0

type Output = u64::Output

fn shr(self, other: &'a u8) -> u64::Output

impl<'a, 'b> Shr<&'a u8> for &'b u641.0.0

type Output = u64::Output

fn shr(self, other: &'a u8) -> u64::Output

impl Shr<u16> for u641.0.0

type Output = u64

fn shr(self, other: u16) -> u64

impl<'a> Shr<u16> for &'a u641.0.0

type Output = u64::Output

fn shr(self, other: u16) -> u64::Output

impl<'a> Shr<&'a u16> for u641.0.0

type Output = u64::Output

fn shr(self, other: &'a u16) -> u64::Output

impl<'a, 'b> Shr<&'a u16> for &'b u641.0.0

type Output = u64::Output

fn shr(self, other: &'a u16) -> u64::Output

impl Shr<u32> for u641.0.0

type Output = u64

fn shr(self, other: u32) -> u64

impl<'a> Shr<u32> for &'a u641.0.0

type Output = u64::Output

fn shr(self, other: u32) -> u64::Output

impl<'a> Shr<&'a u32> for u641.0.0

type Output = u64::Output

fn shr(self, other: &'a u32) -> u64::Output

impl<'a, 'b> Shr<&'a u32> for &'b u641.0.0

type Output = u64::Output

fn shr(self, other: &'a u32) -> u64::Output

impl Shr<u64> for u641.0.0

type Output = u64

fn shr(self, other: u64) -> u64

impl<'a> Shr<u64> for &'a u641.0.0

type Output = u64::Output

fn shr(self, other: u64) -> u64::Output

impl<'a> Shr<&'a u64> for u641.0.0

type Output = u64::Output

fn shr(self, other: &'a u64) -> u64::Output

impl<'a, 'b> Shr<&'a u64> for &'b u641.0.0

type Output = u64::Output

fn shr(self, other: &'a u64) -> u64::Output

impl Shr<usize> for u641.0.0

type Output = u64

fn shr(self, other: usize) -> u64

impl<'a> Shr<usize> for &'a u641.0.0

type Output = u64::Output

fn shr(self, other: usize) -> u64::Output

impl<'a> Shr<&'a usize> for u641.0.0

type Output = u64::Output

fn shr(self, other: &'a usize) -> u64::Output

impl<'a, 'b> Shr<&'a usize> for &'b u641.0.0

type Output = u64::Output

fn shr(self, other: &'a usize) -> u64::Output

impl Shr<i8> for u641.0.0

type Output = u64

fn shr(self, other: i8) -> u64

impl<'a> Shr<i8> for &'a u641.0.0

type Output = u64::Output

fn shr(self, other: i8) -> u64::Output

impl<'a> Shr<&'a i8> for u641.0.0

type Output = u64::Output

fn shr(self, other: &'a i8) -> u64::Output

impl<'a, 'b> Shr<&'a i8> for &'b u641.0.0

type Output = u64::Output

fn shr(self, other: &'a i8) -> u64::Output

impl Shr<i16> for u641.0.0

type Output = u64

fn shr(self, other: i16) -> u64

impl<'a> Shr<i16> for &'a u641.0.0

type Output = u64::Output

fn shr(self, other: i16) -> u64::Output

impl<'a> Shr<&'a i16> for u641.0.0

type Output = u64::Output

fn shr(self, other: &'a i16) -> u64::Output

impl<'a, 'b> Shr<&'a i16> for &'b u641.0.0

type Output = u64::Output

fn shr(self, other: &'a i16) -> u64::Output

impl Shr<i32> for u641.0.0

type Output = u64

fn shr(self, other: i32) -> u64

impl<'a> Shr<i32> for &'a u641.0.0

type Output = u64::Output

fn shr(self, other: i32) -> u64::Output

impl<'a> Shr<&'a i32> for u641.0.0

type Output = u64::Output

fn shr(self, other: &'a i32) -> u64::Output

impl<'a, 'b> Shr<&'a i32> for &'b u641.0.0

type Output = u64::Output

fn shr(self, other: &'a i32) -> u64::Output

impl Shr<i64> for u641.0.0

type Output = u64

fn shr(self, other: i64) -> u64

impl<'a> Shr<i64> for &'a u641.0.0

type Output = u64::Output

fn shr(self, other: i64) -> u64::Output

impl<'a> Shr<&'a i64> for u641.0.0

type Output = u64::Output

fn shr(self, other: &'a i64) -> u64::Output

impl<'a, 'b> Shr<&'a i64> for &'b u641.0.0

type Output = u64::Output

fn shr(self, other: &'a i64) -> u64::Output

impl Shr<isize> for u641.0.0

type Output = u64

fn shr(self, other: isize) -> u64

impl<'a> Shr<isize> for &'a u641.0.0

type Output = u64::Output

fn shr(self, other: isize) -> u64::Output

impl<'a> Shr<&'a isize> for u641.0.0

type Output = u64::Output

fn shr(self, other: &'a isize) -> u64::Output

impl<'a, 'b> Shr<&'a isize> for &'b u641.0.0

type Output = u64::Output

fn shr(self, other: &'a isize) -> u64::Output

impl AddAssign<u64> for u641.8.0

fn add_assign(&mut self, other: u64)

impl SubAssign<u64> for u641.8.0

fn sub_assign(&mut self, other: u64)

impl MulAssign<u64> for u641.8.0

fn mul_assign(&mut self, other: u64)

impl DivAssign<u64> for u641.8.0

fn div_assign(&mut self, other: u64)

impl RemAssign<u64> for u641.8.0

fn rem_assign(&mut self, other: u64)

impl BitAndAssign<u64> for u641.8.0

fn bitand_assign(&mut self, other: u64)

impl BitOrAssign<u64> for u641.8.0

fn bitor_assign(&mut self, other: u64)

impl BitXorAssign<u64> for u641.8.0

fn bitxor_assign(&mut self, other: u64)

impl ShlAssign<u8> for u641.8.0

fn shl_assign(&mut self, other: u8)

impl ShlAssign<u16> for u641.8.0

fn shl_assign(&mut self, other: u16)

impl ShlAssign<u32> for u641.8.0

fn shl_assign(&mut self, other: u32)

impl ShlAssign<u64> for u641.8.0

fn shl_assign(&mut self, other: u64)

impl ShlAssign<usize> for u641.8.0

fn shl_assign(&mut self, other: usize)

impl ShlAssign<i8> for u641.8.0

fn shl_assign(&mut self, other: i8)

impl ShlAssign<i16> for u641.8.0

fn shl_assign(&mut self, other: i16)

impl ShlAssign<i32> for u641.8.0

fn shl_assign(&mut self, other: i32)

impl ShlAssign<i64> for u641.8.0

fn shl_assign(&mut self, other: i64)

impl ShlAssign<isize> for u641.8.0

fn shl_assign(&mut self, other: isize)

impl ShrAssign<u8> for u641.8.0

fn shr_assign(&mut self, other: u8)

impl ShrAssign<u16> for u641.8.0

fn shr_assign(&mut self, other: u16)

impl ShrAssign<u32> for u641.8.0

fn shr_assign(&mut self, other: u32)

impl ShrAssign<u64> for u641.8.0

fn shr_assign(&mut self, other: u64)

impl ShrAssign<usize> for u641.8.0

fn shr_assign(&mut self, other: usize)

impl ShrAssign<i8> for u641.8.0

fn shr_assign(&mut self, other: i8)

impl ShrAssign<i16> for u641.8.0

fn shr_assign(&mut self, other: i16)

impl ShrAssign<i32> for u641.8.0

fn shr_assign(&mut self, other: i32)

impl ShrAssign<i64> for u641.8.0

fn shr_assign(&mut self, other: i64)

impl ShrAssign<isize> for u641.8.0

fn shr_assign(&mut self, other: isize)

impl PartialEq<u64> for u641.0.0

fn eq(&self, other: &u64) -> bool

fn ne(&self, other: &u64) -> bool

impl Eq for u641.0.0

impl PartialOrd<u64> for u641.0.0

fn partial_cmp(&self, other: &u64) -> Option<Ordering>

fn lt(&self, other: &u64) -> bool

fn le(&self, other: &u64) -> bool

fn ge(&self, other: &u64) -> bool

fn gt(&self, other: &u64) -> bool

impl Ord for u641.0.0

fn cmp(&self, other: &u64) -> Ordering

impl Clone for u641.0.0

fn clone(&self) -> u64

1.0.0fn clone_from(&mut self, source: &Self)

impl Default for u641.0.0

fn default() -> u64

impl Step for u64

fn step(&self, by: &u64) -> Option<u64>

fn steps_between(start: &u64, end: &u64, by: &u64) -> Option<usize>

impl Hash for u641.0.0

fn hash<H>(&self, state: &mut H) where H: Hasher

fn hash_slice<H>(data: &[u64], state: &mut H) where H: Hasher

impl Binary for u641.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Octal for u641.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl LowerHex for u641.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl UpperHex for u641.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Debug for u641.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Display for u641.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>