Primitive Type slice []

A dynamically-sized view into a contiguous sequence, [T].

Slices are a view into a block of memory represented as a pointer and a length.

fn main() { // slicing a Vec let vec = vec![1, 2, 3]; let int_slice = &vec[..]; // coercing an array to a slice let str_slice: &[&str] = &["one", "two", "three"]; }
// slicing a Vec
let vec = vec![1, 2, 3];
let int_slice = &vec[..];
// coercing an array to a slice
let str_slice: &[&str] = &["one", "two", "three"];

Slices are either mutable or shared. The shared slice type is &[T], while the mutable slice type is &mut [T], where T represents the element type. For example, you can mutate the block of memory that a mutable slice points to:

fn main() { let x = &mut [1, 2, 3]; x[1] = 7; assert_eq!(x, &[1, 7, 3]); }
let x = &mut [1, 2, 3];
x[1] = 7;
assert_eq!(x, &[1, 7, 3]);

See also the std::slice module.

Methods

impl<T> [T]

Allocating extension methods for slices.

1.0.0fn len(&self) -> usize

Returns the number of elements in the slice.

Example

fn main() { let a = [1, 2, 3]; assert_eq!(a.len(), 3); }
let a = [1, 2, 3];
assert_eq!(a.len(), 3);

1.0.0fn is_empty(&self) -> bool

Returns true if the slice has a length of 0

Example

fn main() { let a = [1, 2, 3]; assert!(!a.is_empty()); }
let a = [1, 2, 3];
assert!(!a.is_empty());

1.0.0fn first(&self) -> Option<&T>

Returns the first element of a slice, or None if it is empty.

Examples

fn main() { let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first()); }
let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());

1.0.0fn first_mut(&mut self) -> Option<&mut T>

Returns a mutable pointer to the first element of a slice, or None if it is empty

1.5.0fn split_first(&self) -> Option<(&T, &[T])>

Returns the first and all the rest of the elements of a slice.

1.5.0fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>

Returns the first and all the rest of the elements of a slice.

1.5.0fn split_last(&self) -> Option<(&T, &[T])>

Returns the last and all the rest of the elements of a slice.

1.5.0fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>

Returns the last and all the rest of the elements of a slice.

1.0.0fn last(&self) -> Option<&T>

Returns the last element of a slice, or None if it is empty.

Examples

fn main() { let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last()); }
let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());

1.0.0fn last_mut(&mut self) -> Option<&mut T>

Returns a mutable pointer to the last item in the slice.

1.0.0fn get(&self, index: usize) -> Option<&T>

Returns the element of a slice at the given index, or None if the index is out of bounds.

Examples

fn main() { let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(None, v.get(3)); }
let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(None, v.get(3));

1.0.0fn get_mut(&mut self, index: usize) -> Option<&mut T>

Returns a mutable reference to the element at the given index, or None if the index is out of bounds

1.0.0unsafe fn get_unchecked(&self, index: usize) -> &T

Returns a pointer to the element at the given index, without doing bounds checking.

1.0.0unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T

Returns an unsafe mutable pointer to the element in index

1.0.0fn as_ptr(&self) -> *const T

Returns an raw pointer to the slice's buffer

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

1.0.0fn as_mut_ptr(&mut self) -> *mut T

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

1.0.0fn swap(&mut self, a: usize, b: usize)

Swaps two elements in a slice.

Arguments

  • a - The index of the first element
  • b - The index of the second element

Panics

Panics if a or b are out of bounds.

Example

fn main() { let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]); }
let mut v = ["a", "b", "c", "d"];
v.swap(1, 3);
assert!(v == ["a", "d", "c", "b"]);

1.0.0fn reverse(&mut self)

Reverse the order of elements in a slice, in place.

Example

fn main() { let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]); }
let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);

1.0.0fn iter(&self) -> Iter<T>

Returns an iterator over the slice.

1.0.0fn iter_mut(&mut self) -> IterMut<T>

Returns an iterator that allows modifying each value

1.0.0fn windows(&self, size: usize) -> Windows<T>

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

Panics

Panics if size is 0.

Example

Print the adjacent pairs of a slice (i.e. [1,2], [2,3], [3,4]):

fn main() { let v = &[1, 2, 3, 4]; for win in v.windows(2) { println!("{:?}", win); } }
let v = &[1, 2, 3, 4];
for win in v.windows(2) {
    println!("{:?}", win);
}

1.0.0fn chunks(&self, size: usize) -> Chunks<T>

Returns an iterator over size elements of the slice at a time. The chunks are slices and do not overlap. If size does not divide the length of the slice, then the last chunk will not have length size.

Panics

Panics if size is 0.

Example

Print the slice two elements at a time (i.e. [1,2], [3,4], [5]):

fn main() { let v = &[1, 2, 3, 4, 5]; for win in v.chunks(2) { println!("{:?}", win); } }
let v = &[1, 2, 3, 4, 5];
for win in v.chunks(2) {
    println!("{:?}", win);
}

1.0.0fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>

Returns an iterator over chunk_size elements of the slice at a time. The chunks are mutable slices, and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

Panics

Panics if chunk_size is 0.

1.0.0fn split_at(&self, mid: usize) -> (&[T], &[T])

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Examples

fn main() { let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2); }
let v = [10, 40, 30, 20, 50];
let (v1, v2) = v.split_at(2);
assert_eq!([10, 40], v1);
assert_eq!([30, 20, 50], v2);

1.0.0fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])

Divides one &mut into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Example

fn main() { let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); } }
let mut v = [1, 2, 3, 4, 5, 6];

// scoped to restrict the lifetime of the borrows
{
   let (left, right) = v.split_at_mut(0);
   assert!(left == []);
   assert!(right == [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(2);
    assert!(left == [1, 2]);
    assert!(right == [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(6);
    assert!(left == [1, 2, 3, 4, 5, 6]);
    assert!(right == []);
}

1.0.0fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

Print the slice split by numbers divisible by 3 (i.e. [10, 40], [20], [50]):

fn main() { let v = [10, 40, 30, 20, 60, 50]; for group in v.split(|num| *num % 3 == 0) { println!("{:?}", group); } }
let v = [10, 40, 30, 20, 60, 50];
for group in v.split(|num| *num % 3 == 0) {
    println!("{:?}", group);
}

1.0.0fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is not contained in the subslices.

1.0.0fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once by numbers divisible by 3 (i.e. [10, 40], [20, 60, 50]):

fn main() { let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); } }
let v = [10, 40, 30, 20, 60, 50];
for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

1.0.0fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

1.0.0fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e. [50], [10, 40, 30, 20]):

fn main() { let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); } }
let v = [10, 40, 30, 20, 60, 50];
for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

1.0.0fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

1.0.0fn contains(&self, x: &T) -> bool where T: PartialEq<T>

Returns true if the slice contains an element with the given value.

Examples

fn main() { let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50)); }
let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

1.0.0fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>

Returns true if needle is a prefix of the slice.

Examples

fn main() { let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50])); }
let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

1.0.0fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>

Returns true if needle is a suffix of the slice.

Examples

fn main() { let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30])); }
let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

Binary search a sorted slice for a given element.

If the value is found then Ok is returned, containing the index of the matching element; if the value is not found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

fn main() { let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, }); }
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1...4) => true, _ => false, });

1.0.0fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering

Binary search a sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

fn main() { let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, }); }
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1...4) => true, _ => false, });

1.0.0fn sort(&mut self) where T: Ord

Sorts the slice, in place.

This is equivalent to self.sort_by(|a, b| a.cmp(b)).

This is a stable sort.

Examples

fn main() { let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]); }
let mut v = [-5, 4, 1, -3, 2];

v.sort();
assert!(v == [-5, -3, 1, 2, 4]);

1.7.0fn sort_by_key<B, F>(&mut self, f: F) where F: FnMut(&T) -> B, B: Ord

Sorts the slice, in place, using key to extract a key by which to order the sort by.

This sort is O(n log n) worst-case and stable, but allocates approximately 2 * n, where n is the length of self.

This is a stable sort.

Examples

fn main() { let mut v = [-5i32, 4, 1, -3, 2]; v.sort_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]); }
let mut v = [-5i32, 4, 1, -3, 2];

v.sort_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);

1.0.0fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering

Sorts the slice, in place, using compare to compare elements.

This sort is O(n log n) worst-case and stable, but allocates approximately 2 * n, where n is the length of self.

Examples

fn main() { let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]); }
let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);

1.7.0fn clone_from_slice(&mut self, src: &[T]) where T: Clone

Copies the elements from src into self.

The length of this slice must be the same as the slice passed in.

Panics

This function will panic if the two slices have different lengths.

Example

fn main() { let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.clone_from_slice(&src); assert!(dst == [1, 2, 3]); }
let mut dst = [0, 0, 0];
let src = [1, 2, 3];

dst.clone_from_slice(&src);
assert!(dst == [1, 2, 3]);

fn copy_from_slice(&mut self, src: &[T]) where T: Copy

Unstable (copy_from_slice #31755)

Copies all elements from src into self, using a memcpy.

The length of src must be the same as self.

Panics

This function will panic if the two slices have different lengths.

Example

#![feature(copy_from_slice)] fn main() { let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.copy_from_slice(&src); assert_eq!(src, dst); }
#![feature(copy_from_slice)]
let mut dst = [0, 0, 0];
let src = [1, 2, 3];

dst.copy_from_slice(&src);
assert_eq!(src, dst);

1.0.0fn to_vec(&self) -> Vec<T> where T: Clone

Copies self into a new Vec.

1.0.0fn into_vec(self: Box<[T]>) -> Vec<T>

Converts self into a vector without clones or allocation.

Trait Implementations

impl<T> AsRef<[T]> for [T]1.0.0

fn as_ref(&self) -> &[T]

impl<T> AsMut<[T]> for [T]1.0.0

fn as_mut(&mut self) -> &mut [T]

impl<'a, 'b, A, B> PartialEq<[A; 0]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 0]) -> bool

fn ne(&self, other: &[A; 0]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 0]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 0]) -> bool

fn ne(&self, other: &[A; 0]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 0]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 0]) -> bool

fn ne(&self, other: &[A; 0]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 1]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 1]) -> bool

fn ne(&self, other: &[A; 1]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 1]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 1]) -> bool

fn ne(&self, other: &[A; 1]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 1]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 1]) -> bool

fn ne(&self, other: &[A; 1]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 2]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 2]) -> bool

fn ne(&self, other: &[A; 2]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 2]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 2]) -> bool

fn ne(&self, other: &[A; 2]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 2]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 2]) -> bool

fn ne(&self, other: &[A; 2]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 3]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 3]) -> bool

fn ne(&self, other: &[A; 3]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 3]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 3]) -> bool

fn ne(&self, other: &[A; 3]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 3]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 3]) -> bool

fn ne(&self, other: &[A; 3]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 4]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 4]) -> bool

fn ne(&self, other: &[A; 4]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 4]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 4]) -> bool

fn ne(&self, other: &[A; 4]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 4]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 4]) -> bool

fn ne(&self, other: &[A; 4]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 5]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 5]) -> bool

fn ne(&self, other: &[A; 5]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 5]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 5]) -> bool

fn ne(&self, other: &[A; 5]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 5]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 5]) -> bool

fn ne(&self, other: &[A; 5]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 6]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 6]) -> bool

fn ne(&self, other: &[A; 6]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 6]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 6]) -> bool

fn ne(&self, other: &[A; 6]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 6]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 6]) -> bool

fn ne(&self, other: &[A; 6]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 7]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 7]) -> bool

fn ne(&self, other: &[A; 7]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 7]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 7]) -> bool

fn ne(&self, other: &[A; 7]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 7]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 7]) -> bool

fn ne(&self, other: &[A; 7]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 8]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 8]) -> bool

fn ne(&self, other: &[A; 8]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 8]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 8]) -> bool

fn ne(&self, other: &[A; 8]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 8]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 8]) -> bool

fn ne(&self, other: &[A; 8]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 9]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 9]) -> bool

fn ne(&self, other: &[A; 9]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 9]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 9]) -> bool

fn ne(&self, other: &[A; 9]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 9]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 9]) -> bool

fn ne(&self, other: &[A; 9]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 10]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 10]) -> bool

fn ne(&self, other: &[A; 10]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 10]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 10]) -> bool

fn ne(&self, other: &[A; 10]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 10]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 10]) -> bool

fn ne(&self, other: &[A; 10]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 11]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 11]) -> bool

fn ne(&self, other: &[A; 11]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 11]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 11]) -> bool

fn ne(&self, other: &[A; 11]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 11]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 11]) -> bool

fn ne(&self, other: &[A; 11]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 12]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 12]) -> bool

fn ne(&self, other: &[A; 12]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 12]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 12]) -> bool

fn ne(&self, other: &[A; 12]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 12]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 12]) -> bool

fn ne(&self, other: &[A; 12]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 13]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 13]) -> bool

fn ne(&self, other: &[A; 13]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 13]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 13]) -> bool

fn ne(&self, other: &[A; 13]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 13]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 13]) -> bool

fn ne(&self, other: &[A; 13]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 14]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 14]) -> bool

fn ne(&self, other: &[A; 14]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 14]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 14]) -> bool

fn ne(&self, other: &[A; 14]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 14]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 14]) -> bool

fn ne(&self, other: &[A; 14]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 15]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 15]) -> bool

fn ne(&self, other: &[A; 15]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 15]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 15]) -> bool

fn ne(&self, other: &[A; 15]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 15]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 15]) -> bool

fn ne(&self, other: &[A; 15]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 16]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 16]) -> bool

fn ne(&self, other: &[A; 16]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 16]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 16]) -> bool

fn ne(&self, other: &[A; 16]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 16]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 16]) -> bool

fn ne(&self, other: &[A; 16]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 17]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 17]) -> bool

fn ne(&self, other: &[A; 17]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 17]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 17]) -> bool

fn ne(&self, other: &[A; 17]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 17]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 17]) -> bool

fn ne(&self, other: &[A; 17]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 18]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 18]) -> bool

fn ne(&self, other: &[A; 18]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 18]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 18]) -> bool

fn ne(&self, other: &[A; 18]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 18]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 18]) -> bool

fn ne(&self, other: &[A; 18]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 19]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 19]) -> bool

fn ne(&self, other: &[A; 19]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 19]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 19]) -> bool

fn ne(&self, other: &[A; 19]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 19]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 19]) -> bool

fn ne(&self, other: &[A; 19]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 20]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 20]) -> bool

fn ne(&self, other: &[A; 20]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 20]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 20]) -> bool

fn ne(&self, other: &[A; 20]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 20]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 20]) -> bool

fn ne(&self, other: &[A; 20]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 21]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 21]) -> bool

fn ne(&self, other: &[A; 21]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 21]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 21]) -> bool

fn ne(&self, other: &[A; 21]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 21]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 21]) -> bool

fn ne(&self, other: &[A; 21]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 22]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 22]) -> bool

fn ne(&self, other: &[A; 22]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 22]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 22]) -> bool

fn ne(&self, other: &[A; 22]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 22]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 22]) -> bool

fn ne(&self, other: &[A; 22]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 23]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 23]) -> bool

fn ne(&self, other: &[A; 23]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 23]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 23]) -> bool

fn ne(&self, other: &[A; 23]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 23]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 23]) -> bool

fn ne(&self, other: &[A; 23]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 24]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 24]) -> bool

fn ne(&self, other: &[A; 24]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 24]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 24]) -> bool

fn ne(&self, other: &[A; 24]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 24]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 24]) -> bool

fn ne(&self, other: &[A; 24]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 25]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 25]) -> bool

fn ne(&self, other: &[A; 25]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 25]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 25]) -> bool

fn ne(&self, other: &[A; 25]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 25]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 25]) -> bool

fn ne(&self, other: &[A; 25]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 26]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 26]) -> bool

fn ne(&self, other: &[A; 26]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 26]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 26]) -> bool

fn ne(&self, other: &[A; 26]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 26]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 26]) -> bool

fn ne(&self, other: &[A; 26]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 27]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 27]) -> bool

fn ne(&self, other: &[A; 27]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 27]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 27]) -> bool

fn ne(&self, other: &[A; 27]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 27]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 27]) -> bool

fn ne(&self, other: &[A; 27]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 28]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 28]) -> bool

fn ne(&self, other: &[A; 28]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 28]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 28]) -> bool

fn ne(&self, other: &[A; 28]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 28]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 28]) -> bool

fn ne(&self, other: &[A; 28]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 29]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 29]) -> bool

fn ne(&self, other: &[A; 29]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 29]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 29]) -> bool

fn ne(&self, other: &[A; 29]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 29]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 29]) -> bool

fn ne(&self, other: &[A; 29]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 30]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 30]) -> bool

fn ne(&self, other: &[A; 30]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 30]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 30]) -> bool

fn ne(&self, other: &[A; 30]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 30]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 30]) -> bool

fn ne(&self, other: &[A; 30]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 31]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 31]) -> bool

fn ne(&self, other: &[A; 31]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 31]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 31]) -> bool

fn ne(&self, other: &[A; 31]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 31]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 31]) -> bool

fn ne(&self, other: &[A; 31]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 32]> for [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 32]) -> bool

fn ne(&self, other: &[A; 32]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 32]> for &'b [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 32]) -> bool

fn ne(&self, other: &[A; 32]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 32]> for &'b mut [B] where B: PartialEq<A>1.0.0

fn eq(&self, other: &[A; 32]) -> bool

fn ne(&self, other: &[A; 32]) -> bool

impl<T> Repr<Slice<T>> for [T]

fn repr(&self) -> T

impl<T> SliceExt for [T]

type Item = T

fn split_at(&self, mid: usize) -> (&[T], &[T])

fn iter(&self) -> Iter<T>

fn split<P>(&self, pred: P) -> Split<T, P> where P: FnMut(&T) -> bool

fn splitn<P>(&self, n: usize, pred: P) -> SplitN<T, P> where P: FnMut(&T) -> bool

fn rsplitn<P>(&self, n: usize, pred: P) -> RSplitN<T, P> where P: FnMut(&T) -> bool

fn windows(&self, size: usize) -> Windows<T>

fn chunks(&self, size: usize) -> Chunks<T>

fn get(&self, index: usize) -> Option<&T>

fn first(&self) -> Option<&T>

fn split_first(&self) -> Option<(&T, &[T])>

fn split_last(&self) -> Option<(&T, &[T])>

fn last(&self) -> Option<&T>

unsafe fn get_unchecked(&self, index: usize) -> &T

fn as_ptr(&self) -> *const T

fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering

fn len(&self) -> usize

fn get_mut(&mut self, index: usize) -> Option<&mut T>

fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])

fn iter_mut(&mut self) -> IterMut<T>

fn last_mut(&mut self) -> Option<&mut T>

fn first_mut(&mut self) -> Option<&mut T>

fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>

fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>

fn split_mut<P>(&mut self, pred: P) -> SplitMut<T, P> where P: FnMut(&T) -> bool

fn splitn_mut<P>(&mut self, n: usize, pred: P) -> SplitNMut<T, P> where P: FnMut(&T) -> bool

fn rsplitn_mut<P>(&mut self, n: usize, pred: P) -> RSplitNMut<T, P> where P: FnMut(&T) -> bool

fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>

fn swap(&mut self, a: usize, b: usize)

fn reverse(&mut self)

unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T

fn as_mut_ptr(&mut self) -> *mut T

fn contains(&self, x: &T) -> bool where T: PartialEq<T>

fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>

fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>

fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord

fn clone_from_slice(&mut self, src: &[T]) where T: Clone

fn copy_from_slice(&mut self, src: &[T]) where T: Copy

impl<T> Index<usize> for [T]1.0.0

type Output = T

fn index(&self, index: usize) -> &T

impl<T> IndexMut<usize> for [T]1.0.0

fn index_mut(&mut self, index: usize) -> &mut T

impl<T> Index<Range<usize>> for [T]1.0.0

type Output = [T]

fn index(&self, index: Range<usize>) -> &[T]

impl<T> Index<RangeTo<usize>> for [T]1.0.0

type Output = [T]

fn index(&self, index: RangeTo<usize>) -> &[T]

impl<T> Index<RangeFrom<usize>> for [T]1.0.0

type Output = [T]

fn index(&self, index: RangeFrom<usize>) -> &[T]

impl<T> Index<RangeFull> for [T]1.0.0

type Output = [T]

fn index(&self, _index: RangeFull) -> &[T]

impl<T> IndexMut<Range<usize>> for [T]1.0.0

fn index_mut(&mut self, index: Range<usize>) -> &mut [T]

impl<T> IndexMut<RangeTo<usize>> for [T]1.0.0

fn index_mut(&mut self, index: RangeTo<usize>) -> &mut [T]

impl<T> IndexMut<RangeFrom<usize>> for [T]1.0.0

fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut [T]

impl<T> IndexMut<RangeFull> for [T]1.0.0

fn index_mut(&mut self, _index: RangeFull) -> &mut [T]

impl<'a, T> Default for &'a [T]1.0.0

fn default() -> &'a [T]

impl<'a, T> Default for &'a mut [T]1.5.0

fn default() -> &'a mut [T]

impl<'a, T> IntoIterator for &'a [T]1.0.0

type Item = &'a T

type IntoIter = Iter<'a, T>

fn into_iter(self) -> Iter<'a, T>

impl<'a, T> IntoIterator for &'a mut [T]1.0.0

type Item = &'a mut T

type IntoIter = IterMut<'a, T>

fn into_iter(self) -> IterMut<'a, T>

impl MutableByteVector for [u8]

fn set_memory(&mut self, value: u8)

impl<A, B> PartialEq<[B]> for [A] where A: PartialEq<B>1.0.0

fn eq(&self, other: &[B]) -> bool

fn ne(&self, other: &[B]) -> bool

impl<T> Eq for [T] where T: Eq1.0.0

impl<T> Ord for [T] where T: Ord1.0.0

fn cmp(&self, other: &[T]) -> Ordering

impl<T> PartialOrd<[T]> for [T] where T: PartialOrd<T>1.0.0

fn partial_cmp(&self, other: &[T]) -> Option<Ordering>

1.0.0fn lt(&self, other: &Rhs) -> bool

1.0.0fn le(&self, other: &Rhs) -> bool

1.0.0fn gt(&self, other: &Rhs) -> bool

1.0.0fn ge(&self, other: &Rhs) -> bool

impl<'a, 'b> Pattern<'a> for &'b [char]

Searches for chars that are equal to any of the chars in the array

type Searcher = CharSliceSearcher<'a, 'b>

fn into_searcher(self, haystack: &'a str) -> CharSliceSearcher<'a, 'b>

fn is_contained_in(self, haystack: &'a str) -> bool

fn is_prefix_of(self, haystack: &'a str) -> bool

fn is_suffix_of(self, haystack: &'a str) -> bool where CharSliceSearcher<'a, 'b>: ReverseSearcher<'a>

impl<T> Hash for [T] where T: Hash1.0.0

fn hash<H>(&self, state: &mut H) where H: Hasher

1.3.0fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher

impl<T> Debug for [T] where T: Debug1.0.0

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl<T, V> SliceConcatExt<T> for [V] where V: Borrow<[T]>, T: Clone

type Output = Vec<T>

fn concat(&self) -> Vec<T>

fn join(&self, sep: &T) -> Vec<T>

fn connect(&self, sep: &T) -> Vec<T>

impl<T> ToOwned for [T] where T: Clone1.0.0

type Owned = Vec<T>

fn to_owned(&self) -> Vec<T>

impl<S> SliceConcatExt<str> for [S] where S: Borrow<str>

type Output = String

fn concat(&self) -> String

fn join(&self, sep: &str) -> String

fn connect(&self, sep: &str) -> String

impl<'a, T> IntoCow<'a, [T]> for &'a [T] where T: Clone1.0.0

fn into_cow(self) -> Cow<'a, [T]>

impl AsciiExt for [u8]1.0.0

type Owned = Vec<u8>

fn is_ascii(&self) -> bool

fn to_ascii_uppercase(&self) -> Vec<u8>

fn to_ascii_lowercase(&self) -> Vec<u8>

fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool

fn make_ascii_uppercase(&mut self)

fn make_ascii_lowercase(&mut self)

impl<'a> Read for &'a [u8]1.0.0

fn read(&mut self, buf: &mut [u8]) -> Result<usize>

fn read_exact(&mut self, buf: &mut [u8]) -> Result<()>

1.0.0fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize>

1.0.0fn read_to_string(&mut self, buf: &mut String) -> Result<usize>

1.0.0fn by_ref(&mut self) -> &mut Self where Self: Sized

1.0.0fn bytes(self) -> Bytes<Self> where Self: Sized

fn chars(self) -> Chars<Self> where Self: Sized

1.0.0fn chain<R: Read>(self, next: R) -> Chain<Self, R> where Self: Sized

1.0.0fn take(self, limit: u64) -> Take<Self> where Self: Sized

fn tee<W: Write>(self, out: W) -> Tee<Self, W> where Self: Sized

impl<'a> BufRead for &'a [u8]1.0.0

fn fill_buf(&mut self) -> Result<&[u8]>

fn consume(&mut self, amt: usize)

1.0.0fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize>

1.0.0fn read_line(&mut self, buf: &mut String) -> Result<usize>

1.0.0fn split(self, byte: u8) -> Split<Self> where Self: Sized

1.0.0fn lines(self) -> Lines<Self> where Self: Sized

impl<'a> Write for &'a mut [u8]1.0.0

fn write(&mut self, data: &[u8]) -> Result<usize>

fn write_all(&mut self, data: &[u8]) -> Result<()>

fn flush(&mut self) -> Result<()>

1.0.0fn write_fmt(&mut self, fmt: Arguments) -> Result<()>

1.0.0fn by_ref(&mut self) -> &mut Self where Self: Sized

fn broadcast<W: Write>(self, other: W) -> Broadcast<Self, W> where Self: Sized

impl<'a> ToSocketAddrs for &'a [SocketAddr]1.8.0

type Iter = Cloned<Iter<'a, SocketAddr>>

fn to_socket_addrs(&self) -> Result<Self::Iter>