
Getting a Crystal Structure into Abinit

J. W. Zwanziger

23 April 2013

1 Introduction

The Abinit program computes the electronic structure of a solid with periodic
boundary conditions, so it always needs in the input a description of the solid.
Most users use as the starting point of their calculation the crystallographic
data (either experimental or from a previous computation) describing a solid.
These data are typically given in the form of a .cif file (the standard format
for exchange of crystal structure data) or from crystallographic data published
in an article. The aim of these notes is to provide some hints to get users started
in correctly entering these data into Abinit.

2 An Easy Case: Stishovite

Stishovite is a polymorph of SiO2. The reason I call it an “easy case” is that its
space group, number 136 in the International Tables, is P42/mnm and therefore
the conventional unit cell and the primitive unit cell are the same.

KEY POINT: A unit cell that displays all the symmetries of the space
group is called the “conventional” unit cell. Some space groups also have unit
cells, which are smaller than the conventional cells, that do not display all the
symmetries. These are called “primitive” unit cells. Of the 236 crystallographic
space groups, those with Hermann-Marguin names beginning with the letter
P have conventional and primitive cells that coincide, while the others do not.
Because the primitive cell always has the fewest number of atoms that can be
used to construct the solid, Abinit always defaults to use the primitive cell.

The .cif file of stishovite contains a lot of data. Here are the parts we care
about:

_chemical_formula_structural ’Si O2’

_cell_length_a 4.1790(4)

_cell_length_b 4.1790(4)

_cell_length_c 2.6649(4)

_cell_angle_alpha 90.

_cell_angle_beta 90.

_cell_angle_gamma 90.

1

_cell_volume 46.54

_cell_formula_units_Z 2

_symmetry_space_group_name_H-M ’P 42/m n m’

_symmetry_Int_Tables_number 136

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_symmetry_multiplicity

_atom_site_Wyckoff_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_B_iso_or_equiv

_atom_site_occupancy

_atom_site_attached_hydrogens

Si1 Si4+ 2 a 0 0 0 . 1. 0

O1 O2- 4 f 0.3062(13) 0.3062(13) 0 . 1. 0

The first thing to look for is the space group name, which is P42/mnm
as mentioned and therefore the unit cell is both conventional and primitive
already. The cell itself happens to be tetragonal: two sides are equal, with length
4.1790 Å(.cif files use Angstroms, not atomic units) and the third side of length
2.6649 Å. The edges of the cell all meet at 90◦: these are the angles alpha, beta,
gamma and are the angles between sides BC, AC, and AB respectively.

Next, notice that the number of formula units Z, is 2. Therefore there will
be 2 units of SiO2 in the unit cell, or 6 atoms total: 2 Si and 4 O. Where are
these atoms? The loop over atom sites tells us, but notice that there are only
two entries: 1 Si and 1 O. That’s because the other locations can be constructed
by symmetry, given the symmetry operations in space group 136. These two
atoms form what is called the “asymmetric unit”. Notice that it is NOT a
multiple of the formula unit. The lines describing the two atoms include a
lot of information, including the site multiplicity, fractional occupancy, and so
forth. These notes are not a full course in crystallography so I’m not going to
try to explain all that here, what you need to get started with Abinit are the
fractional positions, which are entries 5–7 in each line.

So, how does all this look in an Abinit input file? Like this:

spgroup 136 # space group number

acell 4.1790 4.1790 2.6649 angstrom # cell sides, angstrom units

angdeg 90.0 90.0 90.0 # cell angles (this is the default by the way)

znucl 14 8 # atomic number of atoms,

will be cross checked against pseudopotential files

natom 6 # 6 atoms in the unit cell (remember Z = 2 here)

natrd 2 # only read two atoms in, this is the asymmetric unit

ntypat 2 # two types of atoms

typat 1 2 # read atom type 1 then type 2, order is set by znucl above

xred # here come the fractional coordinates from the cif file

2

0 0 0 # first atom type

0.3062 0.3062 0 # second atom type

If I’m unsure that I’ve input a cell correctly, I run Abinit with nstep 1,
prtgeo 2 and prtden 1, so that it only does one step of calculation and prints
geometry and density files. I then examine the geometry output for sensible
bond lengths, and look at the density file using the program Xcrysden to get
a visual image of the cell.

In the output file from an Abinit run, we find near the top:

Symmetries : space group P4_2/m n m (#136); Bravais tP (primitive tetrag.)

==

Thus Abinit found the symmetries we said were there, and is using them.
A bit further we find:

acell 7.8971655093E+00 7.8971655093E+00 5.0359311715E+00 Bohr

typat 1 2 1 2 2 2

xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

3.0620000000E-01 3.0620000000E-01 0.0000000000E+00

5.0000000000E-01 5.0000000000E-01 5.0000000000E-01

1.9380000000E-01 8.0620000000E-01 5.0000000000E-01

6.9380000000E-01 6.9380000000E-01 0.0000000000E+00

8.0620000000E-01 1.9380000000E-01 5.0000000000E-01

Notice that acell is now in atomic units, and also xred for all 6 atoms in the
unit cell have been worked out for us. The first two are the ones we entered, the
rest were computed by symmetry by Abinit. To do this yourself, you would
use the Wyckoff multiplicity of each atom from the .cif file together with the
International Tables entry for that multiplicity in space group 136, to compute
the remaining, symmetry-related atoms.

3 A Harder Case: Anatase

The anatase form of TiO2 is a little harder. Here’s the relevant parts of the
.cif file:

_chemical_formula_structural ’Ti O2’

_cell_length_a 3.7842(13)

_cell_length_b 3.7842(13)

_cell_length_c 9.5146(15)

_cell_angle_alpha 90.

_cell_angle_beta 90.

_cell_angle_gamma 90.

_cell_formula_units_Z 4

_symmetry_space_group_name_H-M ’I 41/a m d S’

_symmetry_Int_Tables_number 141

3

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_symmetry_multiplicity

_atom_site_Wyckoff_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_B_iso_or_equiv

_atom_site_occupancy

_atom_site_attached_hydrogens

Ti1 Ti4+ 4 a 0 0 0 0.39(6) 1. 0

O1 O2- 8 e 0 0 0.2081(2) 0.61(9) 1. 0

It looks at first like stishovite, with a tetragonal cell, but note the space group:
number 141, I41/amd is indeed tetragonal but body-centered, therefore the
primitive cell will be smaller than the conventional cell. Here Z = 4, but that
means 12 atoms in the conventional cell. Here’s what the Abinit input looks
like:

spgroup 141 # space group number

brvltt -1 # tell abinit to find the primitive cell

acell 3.7842 3.7842 9.5146 angstrom # cell sides, angstrom units

angdeg 90.0 90.0 90.0 # cell angles (this is the default by the way)

znucl 22 8 # atomic number of atoms,

will be cross checked against pseudopotential files

natom 6 # 6 atoms in the primitive unit cell (although Z = 4)

natrd 2 # only read two atoms in, this is the asymmetric unit

ntypat 2 # two types of atoms

typat 1 2 # read atom type 1 then type 2, order is set by znucl above

xred # here come the fractional coordinates from the cif file

0 0 0 # first atom type

0 0 0.2081 # second atom type

The input is pretty much like stishovite, but with two key differences: brvltt

-1, to tell Abinit to find the primitive cell from the conventional cell input,
and natom 6, which is not the conventional cell value. How did I know what
value of natom to use? Well, since the primitive cell has to be smaller than
the conventional cell in this case, but still must contain an integral multiple of
formula units, the only choices were 9, 6, and 3; and primitive cells are also
divisors of the total, leaving only 6 and 3 as possibilities. You can work all this
out in exact detail from the symmetries but it’s easy to just guess and run a
trial.

Again, from the output we find:

Symmetries : space group I4_1/a m d (#141); Bravais tI (body-center tetrag.)

==

4

This looks about like before–Abinit is using the space group we wanted.
But further down, things look pretty confusing at first glance:

acell 1.0000000000E+00 1.0000000000E+00 1.0000000000E+00 Bohr

rprim -3.5755508160E+00 3.5755508160E+00 8.9899941320E+00

3.5755508160E+00 -3.5755508160E+00 8.9899941320E+00

3.5755508160E+00 3.5755508160E+00 -8.9899941320E+00

typat 1 2 1 2 2 2

xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

2.0810000000E-01 2.0810000000E-01 2.0704769534E-17

7.5000000000E-01 2.5000000000E-01 5.0000000000E-01

9.5810000000E-01 4.5810000000E-01 5.0000000000E-01

5.4190000000E-01 4.1900000000E-02 5.0000000000E-01

7.9190000000E-01 7.9190000000E-01 -2.0704769534E-17

The acell values now look very different than what we input, and also there is
a new variable rprim that didn’t appear in the stishovite case. Actually, rprim
was in the stishovite case, but as its default value didn’t change, it didn’t get
printed. This would be a good time to review the Abinit documentation for
acell and rprim. Basically, Abinit describes the unit cell in terms of three
lengths acell that multiply three vectors rprim that describe the cell axes.
The default for rprim are the three Cartesian unit vectors, and in the stishovite
case, which has a tetragonal cell, these remain valid and can be multiplied by the
acell values. In certain complex cases like the body-centered tetragonal case,
Abinit resets acell to 1.0 1.0 1.0 and carries both the length and orienta-
tion of the unit cell axes completely in rprim. In particular, a body-centered
tetragonal cell with cell lengths a, a, c is described by a primitive cell with vec-
tors (−a/2, a/2, c/2), (a/2,−a/2, c/2) and (a/2, a/2,−c/2). These values can
be found in the rprim output above.

4 FAQ

How to choose the kpt grid? The kpt mesh has to be coherent with the
symmetry of the cell. The easiest way to set it up is to let Abinit do
the work for you, using the variable kptrlen. With this variable, Abinit
will design a series of meshes with the correct symmetry, and then choose
one with characteristics close to the input value of kptrlen. As a rule of
thumb, kptrlen of 30 gives a coarse mesh, and kptrlen of 60 is pretty fine.
kptrlen of 80 usually gives very good convergence for many properties.
As always, you should do a convergence check on the kpt grid.

For more control, do a run with kptrlen 60 (say) and also prtkpt 1. In
this case Abinit will stop after computing the trial grids, and only print
out information about them. Then you can pick a grid you like based on
its kptrlen value and the number of kpts it will generate (which you
might be matching against the number of processors you can run on).

5

Then you input this mesh using the variables kptrlatt, nshiftk, and
shiftk.

How to choose rprim? As shown in the above examples, using spgroup, acell,
and angdeg lets Abinit do the work of setting up the cell geometry and
therefore rprim. However, if you really want to do it yourself, you have to
know how the primitive cells are constructed for the different cell types.
This information can be found for instance in Bradley and Cracknell (see
Further Reading below), Table 3.1

What about other settings of the space group? Some space groups have
multiple settings–see the Abinit space group help file, which you can ac-
cess from the documentation for the spgroup variable. How do you know
which one to use? The easiest way is to look at the Wyckoff multiplicities
of the atoms in your structure together with their positions, and compare
to the International Tables. This will give you the match for the set-
ting used. You will then have to include spgorig and spgaxor as input
variables to Abinit.

What about forces and special positions? It is not uncommon for atoms
in a unit cell to lie on “special positions”, which are positions in the unit
cell that exhibit the point symmetry of the space group. If the point
symmetry of the position is high enough, vectorial quantities, such as
force, must vanish there. A typical example is AlAs, for which both the
Al and As atoms lie on special positions. When you optimize the unit
cell, the ions can’t move and all forces vanish at them, regardless of the
volume of the cell. To optimize such a cell in Abinit you would use ionmov
2 and optcell 2, but instead of toldff as a convergence variable, use
tolvrs. toldff refers to forces and will always be “converged” in this
case, because all forces are zero.

Is there an even easier way? Yes–there is a Python package called cif2cell,
which reads .cif files directly and can make Abinit input files. In my
experience it works really well. So, are the above notes a waste of your
time? I don’t think so–first, you should understand something about what
you’re inputting to Abinit, and secondly, you may be getting your struc-
ture from tabulated data in a paper, not from a .cif file, and then you
need to understand the Abinit input variables.

5 Further Reading

• International Tables for Crystallography (Wiley, 2012). Volume A contains
the symmetry information for each of the 236 space groups.

• The Mathematical Theory of Symmetry in Solids, C. J. Bradley and A.
P. Cracknell (Oxford, 2010). This book is from 1972 but was recently

6

reissued in paperback. It is very dense and very sophisticated, but well
worth having.

• Fundamentals of Crystallography, C. Giacovazzo et al. (Oxford 1992). A
handbook for how crystallography is actually done, with a very thorough
introduction to symmetry in solids.

• Bilbao Crystallographic Server: http://www.cryst.ehu.es. An incredibly
helpful website. If you’ve ever wondered how to visualize the Brillouin
Zone for some unusual space group, or how to find the special points and
lines in reciprocal space, this is the place to start.

• ICSD Database. A non-free database of .cif files. Very comprehensive,
easy to use, and well worth the subscription fee.

7

