| v

ERLANG

cosNotification

Copyright © 2000-2017 Ericsson AB. All Rights Reserved.
cosNotification 1.1.13
21 2017

Copyright © 2000-2017 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

21 2017

1.1 The cosNotification Application

1 User's Guide

The cosNatification application is an Erlang implementation of the OMG CORBA Notification Service.

1.1 The cosNoaotification Application

1.1.1 Content Overview
The cosNotification documentation is divided into three sections:

* PART ONE - The User's Guide
Description of the cosNotification Application including services and a small tutorial demonstrating the
development of asimple service.

* PART TWO - Release Notes
A concise history of cosNatification.

e PART THREE - The Reference Manual
A quick reference guide, including a brief description, to al the functions available in cosNotification.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

* cosNotification overview
* cosNotification installation
e A tutoria example

1.2 Introduction to cosNotification

1.2.1 Overview

The cosNotification application is a Notification Service compliant with the OMG Notification Service
CosNotification.

Purpose and Dependencies

cosNatification is dependent on Orber-3.1.7 or later, which provides CORBA functionality in an Erlang environment,
cosTime-1.0.1 or later and IDL-files to be compiled using 1C-4.0.4 or later.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming, CORBA and the Orber application.

Recommended reading includes books recommended by the OMG and Open Telecom Platform Documentation Set.
It isalso helpful to have read Concurrent Programming in Erlang.

Ericsson AB. All Rights Reserved.: cosNotification | 1

href

1.3 Installing cosNotification

1.3 Installing cosNotification

1.3.1 Installation Process

This chapter describes how to install cosNotificationApp in an Erlang Environment.

Preparation
Before starting the installation process for cosNotification, the application Orber must be running.

Configuration

When using the Notification Service the cosNotifi cati on application first must be installed using
cosNotificationApp:install () or cosNotificationApp:install (Seconds), followed by
cosNoti ficationApp:start().

Then the Event Channel Factory must be started:

e cosNotificationApp:start_global factory() -startsand returns areference to afactory using
default configuration parameters. This operation should be used for a multi-node Orber.

« cosNotificationApp:start_gl obal _factory(Options) -statsand returnsareferenceto a
factory using given configuration parameters. This operation should be used for a multi-node Orber.

e cosNotificationApp:start_factory() - startsand returns areference to afactory using default
configuration parameters.

e cosNotificationApp:start_factory(Options) - startsand returns areference to afactory using
given configuration parameters.

The following options exist:

e {pulllnterval, Seconds} -determinehow often Proxy Pull Consumerswill check for new events with
the client application. The default valueis 20 seconds.

« {filterQp, OperationType} -determinewhich type of Administrator objects should be started, i.e.,
'"OR_OP' or' AND_OF' . Thedefault valueis' OR_OP' .

o {tineService, TinmeServiceQj | 'undefined} -tobeabletouse Start and/or Stop QoS this

option must be used. Seethefunctionstart _ti ne_servi ce/ 2 inthecosTi ne application. The default
valueis' undefi ned' .

e {filterQp, OperationType} -determinewhich type of Administrator objects should be started, i.e.,
"OR_OP' or' AND _OF' . Thedefault valueis' OR_OFP' .

 {gcTinme, Seconds} -thisoption determineshow often, for example, proxies will garbage collect expired
events. The default valueis 60.

e {gcLimt, Anount} -determineshow many eventswill be stored before, for example, proxies will
garbage collect expired events. The default value is 50. This option istightly coupled with the QoS property
MaxEvent sPer Consuner ,i.e, thegcLi m t should be lessthan MaxEvent sPer Consuner and greater
than 0.

It is possible to define a set of global configuration parameters:

Key Range Default
type_check true | false true
notify atom() | false fase
max_events integer() >0 50

2 | Ericsson AB. All Rights Reserved.: cosNotification

1.4 The Notification Service Components

interval_events integer() >0 10000 milliseconds

timeout_events integer() > interval_events 3000000 milliseconds

Table 3.1: Global Configuration Parameters

Comments on the table 'Global Configuration Parameters’:

type_check
Determine if supplied IOR:s shall be type checked, i.e. invoking corba object:is a/2, or not.

notify
The given value shall point to an existing module exporting afunction (arity 1) called terminated. This
operation isinvoked when a proxy terminates and the argument isalist containing { pr oxy, | OR},
{client, 1OR} and{reason, tern{()}.Thereturnvaueisignored.

max_events
If asupplier proxy has not been able to push events to a consumer and the queue exceeds this limit,
then the proxy will terminate. For this option to have any effect, the Event Rel i abi | ity and
ConnectionRel i abi | i ty QoS parameters must be set to Per si st ent . For more information, see also
the QoS chapter.

interval_events
The same requirements as for max_event s. When asupplier proxy detects problems when trying to push
events, this parameter determines how often it should try to call the consumer.

timeout_events
The same requirements asfor max_event s. If the proxy has not been able to contact the consumer and this
time-limit is reached, then the proxy will terminate.

The Factory is now ready to use. For amore detailed description see Examples.

1.4 The Notification Service Components

1.4.1 The Notification Service Components

This chapter describes the Notification Service Components and how they interact.

Components

There are seven components in the OMG Notification Service architecture. These are described below:

Figure 4.1: Figure 1: The Notification Service Components.

» Event Channel: acts as afactory for Administrator objects. Allows clients to set Administrative Properties.

e Supplier Administrators: acts as afactory for Proxy Consumers. Administrators are started as' AND_OP' - or
' OR_OP' - type, which determinesif events must be validated using both the Administrators associated Filter
and/or its Proxy children Filters.

e Consumer Administrators; actsin the same way as Supplier Administrators but handle Proxy Suppliers.

e Consumer Proxy: is connected to a client application. Can be started as Pul | or Push object. If the proxy is
Push style the client application must push events to the Proxy, otherwise the Proxy is supposed to Pull events.
TheCosNot i fication:: Adm nProperti es isusedto set the pacing interval.

* Supplier Proxy: Actsin asimilar way as the Consumer Proxy, but if started asaPush proxy it will push events
to the client application.

Ericsson AB. All Rights Reserved.: cosNotification | 3

1.5 Filters and the Constraint Language BNF

» Filters: used to filter events. May be associated with Proxies and Administrators.

« Mapping Filters: used to override events Quality of Service settings. Can only be associated with Consumer
Administrators and Proxy Suppliers.

When a Proxy is started it is set to accept CORBA: : Any, CosNoti fication:: StructuredEvent or
CosNoti fication:: Event Bat ch (asequence of structured events).

If aProxy issupposed to deliver structured eventsto aclient application and receivesan CORBA: : Any event, the event
isconverted toastructured event witht ype_nane setto” %ANY" andtheeventisstoredinr emai nder _of _body.

If aProxy issupposed to deliver CORBA: : Any eventsto aclient application and receives astructured event, the event
is stored in an Any type. The Any Type Code will be equa to the CosNoti fi cati on:: StructuredEvent
Type Code.

1.5 Filters and the Constraint Language BNF

1.5.1 Filters and the Constraint Language BNF

This chapter describes, the grammar supported by CosNotifyFilter Filter and CosNotifyFilter MappingFilter, and
how to create and use filter objects.

How to create filter objects

To be able to filter events we must create a filter and associate it with one, or more, of the administrative or proxy
objects. In the example below, we choose to associate the filter with a ConsumerAdmin object.

FilterFactory = cosNotificationApp:start_filter_factory()
Filter = 'CosNotifyFilter_FilterFactory'
create _filter(FilterFactory, "EXTENDED TCL")
ConstraintlnfoSeq = ' CosNotifyFilter_Filter':
add_constraints(Filter, Constraint ExpSeq)
FilterI D = ' CosNot i f yChannel Admi n_Consuner Admi n'
add_filter(Adm nConsuner, Filter)

" EXTENDED_TCL" isthe only grammar supported by Orber Notification Service.

Depending on which operation type the Admin object uses, i.e.," AND_OP' or' OR_OP' , eventswill betested using
the associated filter. The operation properties are:

e 'AND_OP - must be approved by the proxy's and its parent admin'sfilters. If al filters associated with an object
(Admin or Proxy) return false the event will be discarded. In this situation it is pointlessto try and verify with the
other object's associated filters since the outcome still would be the same.

* 'OR_OFP - if one of the object's (Admin or Proxy) filters return true, the event will not be checked against any
other filter associated with a proxy or its parent admin. If a object's associated filters all return false, the event
will be forwarded to related proxies/admins, and tested against any associated filters.

Initially, filters are empty and will aways return true. Hence, we must add constraints by using
"CosNotifyFilter_ Filter':add_constraints/ 2. Asinput, the second argument must be a sequence of:

#' CosNoti fyFilter_Constraint Exp' {
event _types = [# CosNotification_Event Type' {
donmi n_nane = string(),
type_nane = string()}],
constraint_expr = string()}

4 | Ericsson AB. All Rights Reserved.: cosNotification

1.5 Filters and the Constraint Language BNF

The event _types describes which types of events that should be matched using the associated

constrai nt _expr.

If aconstraint expression is supposed to apply for all events, thenthet ype_nane can be set to the special event type

%ALL in aconstraint's event type sequence. The donmi n_nane should be

or"E"

In the following sections we will take a closer ook on how to write constraint expressions.

The CosNotification Constraint Language

The constraint language supported by the Notification Serviceis:

<constraint> := /* enpty */
| <bool >
<bool > : = <bool _or>
<bool _or> : = <bool _or> or <bool _and>

| <bool _and>

<bool _and> : = <bool _and> and <bool _conpar e>

| <bool _conpare>

<bool _conpare> : = <expr_i n> == <expr_i n>
<expr_in> ! = <expr_in>
<expr_i n> < <expr_in>

i
<expr_i n> <= <expr_i n>
<expr_i n> > <expr_i n>
i
i

<expr_i n> >= <expr_in>
<expr _i n>
<expr_in> := <expr_twi ddle> in <ldent> /* sequence only */

| <expr_tw ddl e>

| <expr_twi ddle> in $ <Conponent> /* sequence only */

<expr_tw ddl e> := <expr> ~ <expr> /* string data types only */

| <expr>

<expr> := <expr> + <terne
| <expr> - <ternp
| <terne

<termp := <ternmr * <factor_not>
| <ternm» / <factor_not>
| <factor_not>

<factor_not> : = not <factor>
| <factor>

<factor> := (<bool _or>)
| exist <ldent>

| <ldent>

| <Number >

| - <Nunber>

| <String>

| TRUE

| FALSE

| + <Nunber>

| exist $ <Conponent>

| $ <Conponent >

Ericsson AB. All Rights Reserved.: cosNotification | 5

1.5 Filters and the Constraint Language BNF

| default $ <Conponent> /* discrimnated unions only */

<Conponent> := /* enpty */
| . <ConpDot >
| <ConpArray>
| <ConpAssoc>
| <ldent> <ConpExt> /* run-tinme variable */

<ConpExt> := /* enpty */
| <ConpDot >
| <ConpArray>
| <ConpAssoc>
<ConpDot > : = <l dent > <ConpExt >
| <ConpPos>
| <Uni onPos>
| _length /* only valid for arrays or sequences */
| _d /* discrimnated unions only */
| _type_id /* only valid if possible to obtain */
| _repos_id /* only valid if possible to obtain */

<CompArray> := [<Digits>] <ConpExt>

<ConpAssoc> : = (<ldent>) <ConpExt>

<ConmpPos> : = <Di gi t s> <ConpExt >
<Uni onPos> : = (<Uni onVal >) <ConpExt >

<UnionVal > := /* enpty */
| <Digits>
| - <Digits>
| + <Digits>
| <String>

/* Character set issues */
<l dent > : =<Leader > <Fol | owSeq>
| \' < Leader> <Fol | owSeq>

<Fol | owSeq> := /* <enpty> */
| <Fol | owSeqgq> <Fol | ow>

<Nunber > : = <Manti ssa>
| <Mantissa> <Exponent >

<Mantissa> := <Digits>
| <Digits> .
| . <Digits>
| <Digits> . <Digits>

<Exponent > : = <Exp> <Si gn> <D gi t s>

<Sign> := +
| o

<Exp> := E
| e

<Digits> := <Digits> <Digit>
| <Digit>

<String> :="' <TextChars> '

<Text Chars> := /* <enpty> */

6 | Ericsson AB. All Rights Reserved

<Text Char s> <Text Char >

.. cosNotification

1.5 Filters and the Constraint Language BNF

<Text Char > : = <Al pha>
| <Digit>
| <O her>
| <Special >

<Special > : = \\
[\

<Leader> : = <Al pha>
<Fol | ow> : = <Al pha>
| <Digit>
| _
<Al pha> is the set of al phabetic characters [A-Za-z]

<Digit>is the set of digits [0-9]
<O her>is the set of ASCI|I characters that are not <Al pha> <Digit>, or <Special >

In the absence of parentheses, the following precedence relations hold :

e (),exist,default,unary-sign

* not

.

. +, -

.« ~

e in

. ==,l=,<,<=,> >=
e and

e oOr

The Constraint Language Data Types

The Natification Service Constraint Language, defines how to write constraint expressions, which can be used to filter
events. The representation does, however, differ slightly from ordinary Erlang terms.

When creating aConst r ai nt Exp, thefield const r ai nt _expr must be set to contain astring, e.g.,"1 < 2".
The Notification Service Constraint Language, is designed to be able to filter structured and unstructured events using
the same constraint expression. The Constraint Language Types and Operations can be divided into two sub-groups:

e Basic - arithmetics, strings, constants, numbers etc.
e Complex - accessing members of complex data types, such as unions.

Some of the basic types, e.g., integer, are self explanatory. Hence, they are not described further.

Type/Operation Examples Description

Strings are represented as a sequence
of zero or more<Text Char >s
enclosed in single quotes, e.g.,
"string'.

string "' MyString "

The operator ~is called the substring
~ "*Sringl' ~ "String2'" operator and mean "Stringl is
contained within String2".

Ericsson AB. All Rights Reserved.: cosNotification | 7

1.5 Filters and the Constraint Language BNF

bool ean

"TRUE == (('lang" ~
"Erlang’ + 'fun' ~
"functional') >= 2)"

Booleans may only be TRUE or
FALSE, i.e, only capital letters.
Expressions which evaluate to
TRUE or FAL SE can be summed up
and matched, where TRUE equals 1
and FALSE 0.

sequence

"nyl nt eger Sequence[2] "

The BNF use C/C++ notation,
i.e., the example will return the
thirdelement.

_length

"nyl nt eger Sequence. _| engt

]Returns the length of an sequence or
array.

""Erlang' in
$. Funct i onal Languages-
StringSeq"

Returns TRUEIf agiven element is
found in the given sequence. The
element must be of asimple type
and the same as the sequence is
defined to contain.

" $ - 40u

Denote the current event aswell as
any run-time variables. If the event
is unstructured and its contained
value 40, the example will return
TRUE.

"$. MySt ruct Menber == 40"

The structure member operator

. may be used to referenceits
members when the data refers to
anamed structure, discriminated
union, or CORBA::Any data
structure.

_type_id

"$. type_id ==
"MyStruct' "

Returns the unscoped IDL type
name of the component. This
operation isonly valid if said
information can be obtained.

_repos_id

"$. repos_id ==
"1 DL: MyModul e/
MyStruct:1.0""

Returns the Repositoryld of the
component. This operation isonly
valid if said information can be
obtained.

"$. event Uni on. _d"

May only be used when accessing
discriminated unions and refers to
the discriminator.

exi st

"exi st $.eventUnion. _d
and $. eventUnion._d ==
10"

To avoid that afiltering of an event
fails due to that, for example, we try
to compare a union discriminator
which does not exist, we can use this
operator.

8 | Ericsson AB. All Rights Reserved.: cosNotification

1.5 Filters and the Constraint Language BNF

If the _doperation isin conjunction
"defaul t with the def aul t operation, TRUE
$. event Uni on. _d" will be returned if the union has a
default member that is active.

def aul t

When the component refers to
aunion, with one of the cases
definedascase 0: short
zero; ,weuseQor' zero' .The
result of the example is TRUEIf
the union has a discriminator set
to Oand the value 5. If more than
onecaseisdefinedtobe zero',
$. (' zer o') accepts both; $.
(0) only returns TRUEIf the
discriminator is set to 0. Leaving out
theidentifier, i.e, $. (), refersto
the default value.

"$.(0) == 5"eq."$.

uni on ('ZGI’O') == g"

"$. NanmeVal ueSeq(' nyl D) The Notification service makes
== extensive use of nane- val ue

name-val ue pairs 5" eg." $. NanmeVal ueSeq[1] . nafrpai r ssequences within structured

== '"nylD and events, which allow usto viathe
$. NanmeVal ueSeq[1] . val ue identifier naneaccessitsval ue, as
== 5" shown in the example.

Table 5.1: Table 1: Type and Operator Examples

In the next section we will take a closer look at how it is possible to write constraints using different types of notation
etc.

Accessing Data In Events

To filter events, the supplied constraints must describe the contents of the events and desired values. We can, for
example, state that we are only interested in receiving events which are of type CommunicationsAlarm. To be able to
achievethis, the constraint must containinformation that points out which fieldsto compare with. Figureoneillustrates
aconceptual overview of a structured event. The exact definitionisfound inthe CosNot i fi cati on. i dl file.

Figure 5.1: Figure 1: The structure of a structured event.

The Notification Service supports different constraint expressions notation:

» Fully scoped, e.g., "$.header.fixed_header.event_type.type _name == 'CommunicationsAlarm
e Short hand, e.g., "$type_name == 'CommunicationsAlarm™
» Positional Notation, e.g., "$.0.0.0.1 == 'CommunicationsAlarm™

Ericsson AB. All Rights Reserved.: cosNotification | 9

1.5 Filters and the Constraint Language BNF

Note:

Which notation to useis up to the user, however, the fully scoped may be easier to understand, but in some cases,
if received from an ORB that do not populate ID:s of named parts, the positional notation is the only option.

Note:

If a constraint, which access fields in a structured event structure, is supposed to handle unstructured events as
well, the CORBA::Any must contain the same type of members.

How to filter against the fixed header fields, is described in the table below.

Field Fully Scoped Constraint Short Hand Constraint

"$header fixed_header event_- "$type_name == Type"

type_name type.type_name == 'Type

"$.header.fixed_header.event_-

domain_name : . "
- type.domain_name == 'Domain

"$domain_name == 'Domain™

"$.header fixed_header.event_name

event_name — ‘Event” $event_name == 'Event

Table 5.2: Table 2: Fixed Header Constraint Examples

If we are only interested in receiving events regarding ‘Domain’, 'Event' and 'Type', the constraint can look like
"$domai n_nane == 'Domain' and $event _nane == 'Event' and $type_nane == 'Type'".

The variable event header consists of a sequence of name-value pairs. One way to filter on these are to
use a congtraint that looks like " ($. header. vari abl e_header[1] .name == ‘priority' and
$. header . vari abl e_header[1] .val ue > 0)". An easier way to accomplish the same result isto use a
constraint that treats the name-value pair as an associative array, i.e., when given a name the corresponding value is
returned. Hence, instead we canuse" $. header . vari abl e_header (priority) > 0".

Accessing the event body is done in the same way as for the event header fields. The user must, however, be aware
of, that if a run-time variable ($var i abl e) is used data in the event header may take precedence. The order of
precedenceis:

* Reserved, eq., $curtine

* A simple-typed member of $. header . fi xed_header .

e Propertiesin $. header . vari abl e_header.

e Propertiesin$. fil terabl e_dat a.

e Ifnomatchisfounditistrandatedto $. vari abl e.

Mapping Filters

Mapping Filters may only be associated with Consumer Administrators or Proxy Suppliers. The purpose of aMapping
Filter isto override Quality of Service settings.

10 | Ericsson AB. All Rights Reserved.: cosNotification

1.6 Quality Of Service and Admin Properties

Initially, Mapping Filters are empty and will aways return true. Hence, we must add constraints by using
" CosNoti fyFilter_ MappingFilter':add_mappi ng_constraints/2. If a constraint matches, the
associated value will be used instead of the related Quality of Service system settings.

As input, the second argument must be a sequence of:

#' CosNot i fyFi | t er _Mappi ngConstrai nt Pair' {
constraint_expression = # CosNotifyFilter_Constraint Exp'{
event _types = [# CosNotificati on_Event Type'{
domai n_nanme = string(),
type_nanme = string()}],
constraint_expr = string()},
result_to_set = any()}

1.6 Quality Of Service and Admin Properties

1.6.1 Quality Of Service and Admin Properties

This chapter explains the alowed properties for

CosNotification_AdminPropertiesAdmin.

Quality Of Service

The cosNotification application supports the following QoS settings:

CosNatification_QoSAdmin

and

QoS Range Default
EventReliability BestEffort/Persistent BestEffort
ConnectionRéliability BestEffort/Persistent BestEffort
Priority +/-32767 0
OrderPolicy g:g/er Fifo-, Priority- and Deadline- PriorityOrder
DiscardPolicy E?:Ctsr?cl;/rﬁ\;matr?d%?;dl::rEOr dor | REIECiNewEvents
MaximumBatchSize long() >0 1
Pacinglnterval TimeBase:: TimeT (see cosTime) 0
StartTimeSupported boolean fase
StopTimeSupported boolean fase
MaxEventsPerConsumer long() >0 100
Timeout TimeBase:: TimeT (see cosTime) No timeout

Table 6.1: Table 1: Supported QoS Settings

Ericsson AB. All Rights Reserved.: cosNotification | 11

1.6 Quality Of Service and Admin Properties

Comments on the table 'Supported QoS Settings':

EventReliability
To allow full Persistent EventReliability, every event must be stored in a stable storage which would create a
relatively huge overhead. Hence, only lightweight version of the Persistent QoS is supported. The configuration
parametersmax_event s,i nterval _events andti neout _event s determine the behavior of this
setting.

ConnectionReliability
If this QoS is set to BestEffort and a client object returns anything other than ok to its associated Proxy, the
Proxy will discard all events and terminate. Using Persistent and anything other than ok isreturned, events
will be dropped but the proxy will retry later when next delivery isdue. A child may not have Persistent while
its parent has BestEffort QoS set, e.g., Proxy vs. Admin. If OBJECT_NOT_EXI ST, NO_PERM SSI ON or
CosEvent Conm Di sconnect ed isthrown, the associated object will terminate even if this parameter is
Set to Persistent.

Priority
This QoS will treat all events asif they have the Priority equal to current value, unless the event itself
contains a Priority setting, this event will be treated accordingly. Note: for this property to have any effect, the
DiscardPolicy and/or OrderPolicy must be set to PriorityOrder.

OrderPolicy
If set to PriorityOrder, events with the highest Priority will be delivered first. Deadline order will forward
events with shortest expiry time first. If two events have the same priority, they will be delivered in FIFO-
order.

DiscardPolicy
If set to PriorityOrder and MaxEventsPerConsumer limit is reached, events with the lowest Priority will be
discarded first. Deadline order will discard events with shortest expiry time first.

MaximumBatchSze
Only valid if the object is supposed to handle a sequence of structured events and determines the largest
amount of events that may be passed each time.

Pacinginterval
Determines how long an object will wait before forwarding a structured event sequence of length equal to, or
less than MaximumBatchSize. If set to 0, which is the default behavior, no timeout is used and the events are
forwarded when the MaximumBatchSize is reached.

SartTimeSupported
If set to true events which contains the QoS Property St ar t Ti me (TimeBase::UtcT - absolute time) will not
be delivered until the StartTime value have been exceeded. See also the cosTi e application.

SopTimeSupported
If set to true, events which contain the QoS Properties St opTi nme (TimeBase::UtcT - absolute time) or
Ti meout (TimeBase:: TimeT - relative time) will be discarded if the object has not been able to deliver the
event in time. See also the cosTi ne application.

MaxEventsPer Consumer
The maximum number of events the associated object may store before discarding events in the way described
by the DiscardPoalicy.

Timeout
If this QoS property is not included in the event, and the Property St opTi meSuppor t ed equalstrue, this
setting will be applied if events cannot be delivered within its time limit.

12 | Ericsson AB. All Rights Reserved.: cosNotification

1.6 Quality Of Service and Admin Properties

Warning:

Severa of the above QoS Properties can be changed during run-time but we strongly advice not to since, if a
relatively large amount of events are waiting for delivery, some of the QoS settings would require atotal reorder
of the events. The QoS property Connect i oRel i abi | i t y may never be updated during run-time since it
may cause deadlock. Run-time, in this case, means activating the Channel by sending the first event.

Setting Quality Of Service

Assume we have a Consumer Admin object which we want to change the current Quality of Service. Typical usage:

QoSPersi stent =
[#' CosNotification_Property'

{nanme=' CosNoti fication':"'ConnectionReliability'(),
val ue=any: creat e(orber _tc:short(),
"CosNotification':'Persistent'())}],

' CosNotificati on_QSAdm n':set_gos(Ch, QoSPersistent),

If it is not possible to set the requested QoS the Unsuppor t edQoS exception is raised, which includes a sequence
of Pr opert yEr r or 's describing which QoS, possible range and why is not allowed. The error codes are:

UNSUPPORTED_PROPERTY - QoS not supported for this type of target object.

UNAVAILABLE PROPERTY - dueto current QoS settings the given property is not allowed.
UNSUPPORTED_VALUE - property value out of range; valid range is returned.

UNAVAILABLE_VALUE - dueto current QoS settings the given valueis not allowed; valid range is returned.
BAD_PROPERTY - unrecognized property.

BAD_TY PE - type of supplied property isincorrect.

BAD_VALUE - illegal vaue.

The CosNotification_ QoSAdmin interface al so supports an operation called val i dat e_qos/ 2. The purpose of this
operations is to check if a QoS setting is supported by the target object and if so, the operation returns additional
properties which could be optionally added as well.

Admin Properties

The cosNatification application supports the following Admin Properties:

Property Range Default
MaxQueuel ength 0 0
MaxConsumers long() >=0 0
MaxSuppliers long() >=0 0

Table 6.2: Table 2: Supported Admin Properties

According to the OMG specification the default values for Admin Properties is supposed to be 0, which means that
no limit applies to these properties.

Ericsson AB. All Rights Reserved.: cosNotification | 13

1.7 cosNotification Examples

Note:

Admin Properties can only be set on a Channel Object level, i.e., they will not have an impact on any Admin
or Proxy Objects. Currently, setting the Admin Property MaxQueuelengt h have no effect since we cannot
discard events accordingly to the Quality of Service Property Di scar dPol i cy.

1.7 cosNotification Examples

1.7.1 A Tutorial on How to Create a Simple Service

Interface Design
To use the cosNotification application clients must be implemented. There are twelve types of clients:

* Structured Push Consumer
e Sequence Push Consumer
* Any Push Consumer

e Structured Pull Consumer
* Sequence Pull Consumer

* Any Pull Consumer

e Structured Push Supplier

» Sequence Push Supplier

e Any Push Supplier

e Structured Pull Supplier

e Sequence Pull Supplier

e Any Pull Supplier
Theinterfaces for these participants are defined in CosNoatification.idl and CosNotifyComm.idl.

Generating a Client Interface

We dat by creating an interface which inherits from the correct interface, e.g.,
CosNotifyComm:: SequencePushConsumer. Hence, we must also implement all operations defined in the
SequencePushConsumer interface. The IDL-file could look like:

#i f ndef _MYCLI ENT_| DL
#def i ne _MYCLI ENT_|I DL
#i ncl ude <CosNoti fication.idl >
#i ncl ude <CosNoti fyComm i dl >
modul e nmydientlnpl {
interface ownl nterface: CosNoti f yComm : SequencePushConsuner {

voi d ownFunctions(in any NeededAr gunents)
rai ses(Syst emexcepti ons, OmExcepti ons) ;

#endi f

14 | Ericsson AB. All Rights Reserved.: cosNotification

1.7 cosNotification Examples

Run the IDL compiler on this file by calling the i c: gen/ 1 function. This will produce the APl named
nyCientlnmpl _ownlnterface. erl. After generating the APl stubs and the server skeletons it is
time to implement the servers and if no special options are sent to the IDlI compiler the file name is
myCientlnmpl _ownlnterface_ inpl.erl.

The callback module must contain the necessary functionsinherited from CosNotification.idl and CosNotifyComm.idl.

How to Run Everything

Below is ashort transcript on how to run cosNatification.

%6 Start Mesia and O ber
mesi a: del et e_schema([node()]),
mesi a: creat e_schema([node()])
orber:install ([node()]),

mesi a: start (),

orber:start(),

W6 | f cosEvent not installed before it is necessary to do it now.
cosEvent App:install(),

Wb Install cosNotification in the |FR
cosNotificati onApp:install(30),

%% Regi ster the application specific Client inplenentations
%Woin the | FR
'oe_nyClientlnpl':'oe register' (),

%b Start the cosNotification application.
cosNotificati onApp:start(),

%6 Start a factory using the default configuration
ChFac = cosNotificationApp:start_factory(),

%6 ... or use configuration paraneters.

ChFac = cosNotificationApp:start_factory([]),

%hb Create a new event channel. Note, if no QoS- anr/or Adm n-properties
%o are supplied (i.e. enpty list) the default settings are used.
{Ch, ChID} = 'CosNotifyChannel Adm n_Event Channel Factory':

creat e_channel (ChFac, Defaul t @S, Defaul t Adni n),

%6 Retrieve a SupplierAdnin and a Consuner Admi n.
{ Adm nSupplier, ASID}=

' CosNot i f yChannel Adnmi n_Event Channel ' : new_for_suppliers(Ch, 'OR OP'),
{ Adm nConsuner, ACID}=

' CosNot i f yChannel Adnmi n_Event Channel ' : new_f or _consuners(Ch,' OR_ OP'),

%% Use the correspondi ng Admi n object to get access to wanted Proxies

%b Create a Push Consunmer Proxie, i.e., the Cient Push Supplier wll

%% push events to this Proxy.

{StructuredProxyPushConsuner, | D11} = ' CosNot i f yChannel Adm n_Suppl i er Admi n' :
obtai n_notification_push_consurer (Adm nSupplier, 'STRUCTURED_EVENT')),

%%b Create Push Suppliers Proxies, i.e., the Proxy will push events to the
%o regi stered Push Consuners.
{ ProxyPushSuppl i er, | 4D} =" CosNot i f yChannel Adm n_Consuner Adm n' :
obtai n_notification_push_supplier(Adm nConsunmer, ‘' ANY_EVENT'),
{ St ruct ur edPr oxyPushSuppl i er, | D5} =" CosNot i f yChannel Adni n_Consuner Adni n' :
obtai n_notification_push_supplier(Adm nConsunmer, 'STRUCTURED EVENT'),
{ SequencePr oxyPushSuppl i er, | D6} =" CosNot i f yChannel Adm n_Consuner Admi n' :
obtai n_notification_push_supplier(Adm nConsunmer, 'SEQUENCE EVENT'),

Ericsson AB. All Rights Reserved.: cosNotification | 15

1.7 cosNotification Examples

%6 Create application dients. W can, for exanple, start the Clients
%b our selves or |look themup in the nam ng service. This is application
%% speci fic.
Supplierdient
Consurer Cl i ent 1
Consurer Cl i ent 2
Consurner Cl i ent 3

%% Connect each Client to correspondi ng Proxy.
' CosNot i f yChannel Admi n_St r uct ur edPr oxyPushConsurer ' :
connect _structured_push_supplier(StructuredProxyPushConsuner, Supplierdient),
' CosNot i f yChannel Admi n_ProxyPushSupplier':
connect _any_push_consuner (ProxyPushSuppl i er, ConsurmerCientl),
' CosNot i f yChannel Admi n_Str uct ur edPr oxyPushSuppl i er':
connect _structured_push_consuner (Struct ur edPr oxyPushSuppl i er, Consunerdient?2),
' CosNot i f yChannel Adni n_SequencePr oxyPushSuppl i er':
connect _sequence_push_consuner (SequencePr oxyPushSuppl i er, Consunmerd i ent 3),

The example above, exemplifies a notification system where the SupplierClient in some way generates event and
pushes them to the proxy. The push supplier proxies will eventually push the events to each ConsumerClient.

16 | Ericsson AB. All Rights Reserved.: cosNotification

1.7 cosNotification Examples

2 Reference Manual

The cosNatification application is an Erlang implementation of the OMG CORBA Notification Service.

Ericsson AB. All Rights Reserved.: cosNotification | 17

cosNotificationApp

cosNotificationApp

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module contains the functions for starting and stopping the application.

Exports

install() -> Return
Types:
Return = ok | {EXCEPTION', E}
This operation installs the cosNotification application.

i nstall (Seconds) -> Return
Types:
Return = ok | {EXCEPTION', E}
This operation installs the cosNatification application using Seconds delay between each block, currently 6, of IFR-

registrations. This approach spreads the IFR database access over a period of time to alow other applications to run
smother.

install _event() -> Return
Types:
Return = ok | {'EXCEPTION', E}

This operation, which may only be used if it isimpossible to upgrade to cosEvent-2.0 or later, installs the necessary
cosEvent interfaces. If cosEvent-2.0 isavailable, usecosEvent App: i nstal | () instead.

install _event(Seconds) -> Return
Types:
Return = ok | {{EXCEPTION', E}
This operation, which may only be used if it isimpossible to upgrade to cosEvent-2.0 or later, installs the necessary

cosEvent interfaces using Seconds delay between each block of IFR-registrations. If cosEvent-2.0 is available, use
cosEvent App:install () instead.

uninstall () -> Return
Types:
Return = ok | {EXCEPTION', E}
This operation uninstalls the cosNotification application.

uni nstal | (Seconds) -> Return

Types:
Return = ok | {EXCEPTION', E}

18 | Ericsson AB. All Rights Reserved.: cosNotification

cosNotificationApp

This operation uninstalls the cosNotification application using Seconds delay between each block, currently 6, of
| FR-unregistrations. This approach spreads the IFR database access over a period of time to allow other applications
to run smother.

uninstall _event() -> Return
Types:
Return = ok | {{EXCEPTION', E}
This operation uninstalls the inherited cosEvent interfaces. If cosEvent is in use this function may not be used.

This function may only be used if cosNotificati onApp:install_event/1/2 was used. If not, use
cosEvent App: uni nstal | () instead.

uni nstal |l _event (Seconds) -> Return
Types:
Return = ok | {{EXCEPTION', E}
This operation uninstals the inherited cosEvent interfaces, using Seconds delay between each block of
IFR-unregistrations. If cosEvent is in use this function may not be used. This function may only be used

if cosNotificationApp:install _event/1/2 was used. If not, use cosEvent App: uni nstal |l ()
instead.

start() -> Return
Types:
Return = ok | {error, Reason}
This operation starts the cosNotification application.

stop() -> Return
Types:
Return = ok | {error, Reason}
This operation stops the cosNotification application.

start _global factory() -> Channel Factory
Types:
ChannelFactory = #objref

This operation creates a Event Channel Factory should be used for a multi-node Orber. The Factory is used to create
anew channel.

start _gl obal factory(Options) -> Channel Factory
Types:
Options=[Option]
Option = {pulllnterval, Seconds} | {filter Op, Op} | {gcTime, Seconds} | {gcLimit, Anount} | {timeService,
#objref}
ChannelFactory = #objref

This operation creates a Event Channel Factory and should be used for a multi-node Orber. The Factory is used to
create a new channel.

Ericsson AB. All Rights Reserved.: cosNotification | 19

cosNotificationApp

e {pulllnterval, Seconds} - determinehow often Proxy Pull Consumerswill check for new events with
the client application. The default value is 20 seconds.

« {filterQp, OperationType} -determinewhich type of Administrator objects should be started, i.e.,
'"OR_OP' or' AND_OF' . Thedefault valueis' OR_OP' .
« {timeService, TimeServiceObj | 'undefined'} -tobeabletouse Start and/or Stop QoSthis

option must be used. Seethefunctionstart _ti nme_servi ce/ 2 inthecosTi ne application. The default
valueis' undefi ned' .

o {filterOp, OperationType} -determinewhich type of Administrator objects should be started, i.e.,
'"OR_OP' or' AND_OF' . Thedefault valueis' OR_OP' .

« {gcTinme, Seconds} -thisoption determines how often, for example, proxies will garbage collect expired
events. The default valueis 60.

e {gcLinmt, Anount} -determineshow many eventswill be stored before, for example, proxieswill
garbage collect expired events. The default value is 50. This option istightly coupled with the QoS property
MaxEvent sPer Consuner ,i.e, thegcLi mi t should belessthan MaxEvent sPer Consumer and greater
than 0.

start_factory() -> Channel Factory
Types:
ChannelFactory = #objref
This operation creates a Event Channel Factory. The Factory is used to create a new channel.

start _factory(Options) -> Channel Factory
Types:
Options=[Option]
Option = {pulllnterval, Seconds} | {filterOp, Op} | {gcTime, Seconds} | {gcLimit, Amount} | {timeService,
#objref}
ChannelFactory = #objr ef
This operation creates a Event Channel Factory. The Factory is used to create a new channel.

stop_factory(Channel Factory) -> Reply
Types:

ChannelFactory = #objr ef

Reply = ok | {'EXCEPTION', E}
This operation stop the target channel factory.

start_filter_factory() -> FilterFactory
Types:
Filter Factory = #objref
This operation creates a Filter Factory. The Factory is used to create anew Filter's and MappingFilter's.

stop _filter _factory(FilterFactory) -> Reply
Types.

Filter Factory = #objref

Reply = ok | {EXCEPTION', E}

20 | Ericsson AB. All Rights Reserved.: cosNotification

cosNotificationApp

This operation stop the target filter factory.

create_structured_event (Domai n, Type, Event, Variabl eHeader, Filterabl eBody,
BodyRemai nder) -> Reply

Types:
Domain = string()
Type=string()
Event = string()
VariableHeader = [CosNotification::Property]
FilterableBody = [CosNotification::Property]
BodyRemainder = #any data-type
Reply = CosNotification:: StructuredEvent | {'EXCEPTION', E}

An easy way to create a structured event is to use this function. Simple typechecks are performed and if one of the
arguments is not correct a'BAD_PARAM' exception is thrown.

type_check() -> Reply
Types:
Reply = true| false

This operation returns the value of the configuration parameter t ype_check.

Ericsson AB. All Rights Reserved.: cosNotification | 21

CosNotifyChannelAdmin_EventChannelFactory

CosNotifyChannelAdmin_EventChannelFactory

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

Exports

creat e_channel (Channel Factory, Initial QS, Initial Admin) -> Return
Types:
ChannelFactory = #objref
I nitialQoS = CosNotification::QoSProperties
InitialAdmin = CosNotification:: AdminProperties
Return = {EventChannel, Channell D}
EventChannel = #objref
ChannélID =long()
This operation creates a new event channel. Along with the channel reference an id is returned which can be used

when invoking other operations exported by this module. The Quality of Service argument supplied will be inherited
by objects created by the channel. For more information about QoS settings seethe User' s Qui de.

If no QoS- and/or Admin-properties are supplied (i.e. empty list), the default settings will be used. For more
information, see the User's Guide.

get _al | _channel s(Channel Factory) -> Channel | DSeq
Types:

ChannelFactory = #objref

ChannellDSeq = [long()]

This operation returns aid sequence of all channel's created by this Channel Factory.

get _event _channel (Channel Factory, ChannelID) -> Return
Types:
ChannelFactory = #objref
ChannelID = long()
Retrurn = EventChannel | {'EXCEPTION', # CosNotifyChannelAdmin_ChannelNotFound'{}}
EventChannel = #objref

Thisoperation returns the EventChannel associated with the givenid. If no channel isassociated withtheid, i.e., never
existed or have been terminated, an exception is raised.

22 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_EventChannel

CosNotifyChannelAdmin_EventChannel

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

* CosNatification_QoSAdmin
» CosNatification_AdminPropertiesAdmin

Exports

_get _MyFact ory(Channel) -> Channel Factory
Types:

Channel = #objref

ChannelFactory = #objr ef

This readonly attribute maintains the reference of the event channel factory that created the target channel.

_get _default_consuner_adm n(Channel) -> Consuner Adni n
Types:

Channel = #objref

Consumer Admin = #objref

This is a readonly attribute which maintains a reference to a default Consuner Admi n object associated with the
target object.

_get _default_supplier_adm n(Channel) -> SupplierAdnin
Types.

Channel = #objref

Supplier Admin = #objref

This is a readonly attribute which maintains a reference to a default Suppl i er Admi n object associated with the
target object.

_get _default _filter_factory(Channel) -> FilterFactory
Types:

Channel = #objref

Filter Factory = #objref

Thedefault Fi | t er Fact or y associated with the target channel is maintained by this readonly attribute.

new for_consuners(Channel, QpType) -> Return
Types:

Channel = #objref

OpType="'AND_OF' |'OR_OF

Return = {Consumer Admin, AdminI D}

Ericsson AB. All Rights Reserved.: cosNotification | 23

CosNotifyChannelAdmin_EventChannel

Consumer Admin = #objr ef
AdminID =long()
This operation creates a new instance of a Consuner Admi n and supplies an Id which may be used when invoking

other operations exported by this module. The returned object will inherit the Quality of Service properties of the
target channel.

for_consuners(Channel) -> Consumner Adni n
Types:
Channel = #objref
Consumer Admin = #objr ef
A new new instance of a Consumer Admni n object is created but no Id is returned. The returned object's operation

type, i.e, ' AND_OP' or' OR_OFP' , will be set to the value of the configuration parameter fi | t er Op. The target
object's Quality of Service propertieswill be inherited by the returned Consurer Admni n.

new for_suppliers(Channel, OpType) -> Return
Types:
Channel = #objref
OpType="'AND_OF' |'OR_OF
Return = {Supplier Admin, AdminI D}
Supplier Admin = #obj ref
AdminlID =long()
Enablesusto create anew instanceof aSuppl i er Adm n. Anld, which may be used when invoking other operations

exported by thismodule, is also returned. The current Quality of Service settings associated with the target object will
be inherited by the Suppl i er Admi n.

for_suppliers(Channel) -> SupplierAdmn
Types:

Channel = #objref

Supplier Admin = #objref

Tocreateanew Suppl i er Adm n withthetarget object's current Quality of Service settingswe can usethisfunction.
The returned object's operation type (' AND_OP' or ' OR_OP") will be determined by the configuration variable

filterQOp.

get _consuneradm n(Channel, Admi nl D) -> Consuner Adnin
Types.
Channel = #objref
AdminID =long()
Consumer Admin = #objref | { EXCEPTION', # CosNotifyChannelAdmin_AdminNotFound'{}}

If thegiven Id isassociated withaConsunmer Adm n the object referenceisreturned. If such association never existed
or the Consuner Adni n have terminated an exception is raised.

get _supplieradm n(Channel, AdmnlD) -> SupplierAdnin

Types:
Channel = #objref

24 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_EventChannel

AdminlID =long()
Supplier Admin = #objref | {{ EXCEPTION', # CosNotifyChannel Admin_AdminNotFound'{}}

Equal to the operation get _consuner admi n/ 2 but areferenceto aSuppl i er Adm n isreturned.

get _all _consuneradm ns(Channel) -> Reply
Types:
Channel = #objref
Reply = [AdminI D]
AdminID =long()
To get accessto all Consuner Adm n Id's created by thetarget object, and still alive, thisoperation could beinvoked.

get _all _supplieradm ns(Channel) -> Reply
Types.
Channel = #objref
Reply = [AdminI D]
AdminID =long()
Equal to the operationget _al | _consuner adm ns/ 1 but returnsalist of al Suppl i er Admi n object ID's.

destroy(Channel) -> ok
Types:
Channel = #objref
Thedest r oy operation will terminate the target channel and all associated Admin objects.

Ericsson AB. All Rights Reserved.: cosNotification | 25

CosNotification

CosNotification

Erlang module

To get access to al definitions include necessary hr | files by using:
-include_lib("cosNotification/include/*.hrl").

Exports

"EventReliability' () -> string()
This function returns the EventReliability QoS identifier

"BestEffort' () -> short()
This function returns the BestEffort QoS value.

"Persistent' () -> short()
This function returns the Persistent QoS value.

" ConnectionReliability' () -> string()
This function returns the ConnectionReliability QoS identifier.

"Priority' () -> string()
This function returns the Priority QoS identifier.

"LowestPriority' () -> short()
This function returns the LowestPriority QoS value.

"HighestPriority' () -> short()
This function returns the HighestPriority QoS value.

"Defaul tPriority' () -> short()
This function returns the DefaultPriority QoS value.

"StartTinme' () -> string()
This function returns the StartTime QoS identifier.

"StopTinme' () -> string()
This function returns the StopTime QoS identifier.

"Timeout' () -> string()
This function returns the Timeout QoS identifier.

26 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotification

"OrderPolicy' () -> string()
This function returns the OrderPolicy QoS identifier.

"AnyOrder' () -> short()
This function returns the AnyOrder QoS value.

"FifoOrder' () -> short()
This function returns the FifoOrder QoS value.

"PriorityOrder' () -> short()
This function returns the PriorityOrder QoS value.

' Deadl i neOrder' () -> short()
This function returns the DeadlineOrder QoS value.

"DiscardPolicy' () -> string()
This function returns the DiscardPolicy QoS identifier.

"LifoOrder' () -> short()
This function returns the LifoOrder QoS value.

' Rej ect NewEvents' () -> short()
This function returns the RejectNewEvents QoS value.

" Maxi munBat chSi ze' () -> string()
This function returns the MaximumBatchSize QoS identifier.

"Pacinglnterval' () -> string()

This function returns the Pacinglnterval QoS identifier.

"StartTi meSupported' () -> string()
This function returns the StartTimeSupported QoS identifier.

' St opTi meSupported' () -> string()
This function returns the StopTimeSupported QoS identifier.

' MaxEvent sPer Consuner' () -> string()

This function returns the MaxEventsPerConsumer QoS identifier.

' MaxQueuelLength' () -> string()
This function returns the MaxQueuel ength Admin identifier.

Ericsson AB. All Rights Reserved

.. cosNotification | 27

CosNotification

" MaxConsuners' () -> string()

This function returns the MaxConsumers Admin identifier.

" MaxSuppliers' () -> string()
This function returns the MaxSuppliers Admin identifier.

28 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotification_QoSAdmin

CosNoaotification_ QoSAdmin

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit thisinterface, export functions described in this module.

Exports

get _qos(Object) -> Reply
Types:
Object = #objref
Reply = [QoSProperty]
QoSPraoperty = # CosNatification_Property'{name, value}
name = string()
value = #any
This operation returns alist of name-value pairs which encapsulates the current QoS settings for the target object.

set _qos(Object, QS) -> Reply
Types:
Object = #objref
QoS = [QoSProperty]
QoSPraoperty = # CosNatification_Property'{name, value}
name = string()
value = #any
Reply = ok | {'EXCEPTION', # CosNotification_UnsupportedQoS{qos err}}
gos _err = PropertyError Seq
PropertyError Seq = [PropertyError]
PropertyError = # CosNotification_PropertyError'{code, name, available range}

code ="UNSUPPORTED_PROPERTY" | 'UNAVAILABLE_PROPERTY' |'UNSUPPORTED_VALUE'
[' UNAVAILABLE_VALUE' |'BAD_PROPERTY' |'BAD_TYPE' |'BAD_VALUE'

name = string()
available range = PropertyRange
PropertyRange = #CosNotification_PropertyRange{low_val, high_val}
low_val = high_val = #any
To alter the current QoS settings for the target object this function must be used. If it isnot possible to set the requested

QoStheUnsuppor t edQoS exceptionisraised, which includesasequence of Pr oper t yEr r or 'sdescribing which
QoS, possible range and why is not allowed.

val i date_qos(Obj ect, QS) -> Reply
Types.

Object = #objref

QoS = [QoSProperty]

Ericsson AB. All Rights Reserved.: cosNotification | 29

CosNotification_QoSAdmin

QoSProperty = # Property'{name, value}

name = string()

value = #any

Reply = {ok, NamedPropertyRangeSeq} | {' EXCEPTION', CosNatification_UnsupportedQo(}}

NamedPr opertyRangeSeq = [NamedPropertyRange]

NamedPr opertyRange = #CosNotification_NamedPropertyRange{name, range}

name = string()

range = #CosNoatification_PropertyRange{low_val, high_val}

low_val = #any

high_val = #any
The purpose of this operations is to check if a QoS setting is supported by the target object and if so, the operation
returns additional properties which could be optionally added as well.

30 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotification_AdminPropertiesAdmin

CosNotification_AdminPropertiesAdmin

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit thisinterface, export functions described in this module.

Exports

get _adm n(Cbj ect) -> Adm nProperties
Types:
Object = #objref
AdminProperties=[AdminProperty]
AdminProperty = # CosNatification_Property'{name, value}
name = string()
value = #any
This operation returns sequence of name-value pairs which encapsulates the current administrative properties of the
target object.

set _adm n(Qoject, Adnmi nProperties) -> Reply
Types:
Object = #objref
AdminProperties=[AdminProperty]
AdminProperty = # CosNatification_Property'{name, value}
name = string()
value = #any
Reply = ok | {'EXCEPTION', CosNotification_UnsupportedAdmin}

As input, this operation accepts a sequence of name-value pairs encapsulating the desired administrative settings for
the target object. If it is not possible to set the given properties the exception Unsuppor t edAdmi n will be raised.

Ericsson AB. All Rights Reserved.: cosNotification | 31

CosNotifyChannelAdmin_ConsumerAdmin

CosNotifyChannelAdmin_ConsumerAdmin

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:
« CosNatification_QoSAdmin

e CosNotifyComm_NotifySubscribe

e CosNatifyFilter_FilterAdmin

Exports

_get Ml D(Consuner Admi n) -> AdnminlD
Types.

Consumer Admin = #objref

AdminID =long()

The ID returned by the creating channel is equal to the value encapsulated by this readonly attribute.

_get _MyChannel (Consumner Adni n) -> Channel
Types:

Consumer Admin = #objr ef

Channel = #objref

The creating channel's reference is maintained by this readonly attribute.

_get _MyOper at or (Consuner Adm n) -> OpType
Types:

Consumer Admin = #objref

OpType="'AND_OF' |'OR_OF

When Consuner Adni n' s are created an operation type, i.e.,, ' AND OP' or ' OR_OP', is supplied, which
determines the semantics used by the target object concerning evaluation against any associated Fi | t er objects.

_get _priority filter(ConsunerAdm n) -> Mappi ngFilter
Types:
Consumer Admin = MappingFilter = #objr ef
If set, this operation returns the associated priority Mappi ngFi | t er, otherwiseaNI L object referenceis returned.

_set _priority filter(ConsunerAdm n, MappingFilter) -> ok
Types:
Consumer Admin = MappingFilter = #objref
To associate apriority Mappi ngFi | t er with the target object this operation must be used.

32 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ConsumerAdmin

_get lifetime _filter(ConsunerAdmi n) -> MappingFilter
Types:
Consumer Admin = MappingFilter = #objr ef

Unless a lifetime Mappi ngFi | t er have been associated with the target object a NI L object reference is returned
by this operation.

_set _lifetine_filter(Consunmer Adm n, MappingFilter) -> ok
Types:

Consumer Admin = MappingFilter = #objref
This operation associate a lifetime Mappi ngFi | t er with the target object.

_get _pul |l _suppliers(Consumer Adni n) -> Proxyl DSeq
Types:
Consumer Admin = #objr ef
Proxyl DSeq = [Proxyl D]
Proxyl D =long()
This readonly attribute maintains the Id's for al Pul | Pr oxi es created by the target object and till alive.

_get _push_suppl i ers(Consurer Adnmi n) -> Proxyl DSeq
Types:

Consumer Admin = #objref

Proxyl DSeq = [Proxyl D]

Proxyl D =long()

This attribute is similar to the _get pul | _suppl i er s attribute but maintains the Id's for al PushPr oxi es
created by the target object and still aive.

get _proxy_supplier (Consumner Admi n, ProxylD) -> Reply
Types:
Consumer Admin = #objr ef
Proxyl D =long()
Reply = Proxy | {'EXCEPTION', # CosNotifyChannel Admin_ProxyNotFound'{}}
Proxy = #objr ef

If a proxy with the given Id exists the reference to the object is returned, but if the object have terminated, or an
incorrect Id is supplied, an exception is raised.

obtain_notification_pull_supplier(Consuner Adm n, Consuner Type) -> Reply
Types:

Consumer Admin = #objr ef

ConsumerType="ANY_EVENT' |'STRUCTURED_EVENT' |'SEQUENCE_EVENT"

Reply = {Proxy, Proxyl D}

Proxy = #objref

Proxyl D =long()

Ericsson AB. All Rights Reserved.: cosNotification | 33

CosNotifyChannelAdmin_ConsumerAdmin

Determined by the parameter Consuner Ty pe, aproxy which will accept events of the defined typeiscreated. Along
with the object reference an 1d is returned.

obt ai n_pul | _suppl i er (Consumer Adni n) -> Proxy
Types:

Consumer Admin = #objref

Proxy = #objr ef
This operation creates a new proxy which accepts#any{} events.

obtain_notification_push_supplier(Consuner Adm n, Consuner Type) -> Reply
Types:

Consumer Admin = #objref

ConsumerType="ANY_EVENT' |'STRUCTURED_EVENT' |'SEQUENCE_EVENT"

Reply = {Proxy, Proxyl D}

Proxy = #objref

Proxyl D =long()

A proxy which accepts events of the type described by the parameter Consuner Type is created by this operation.
A unique |d isreturned as an out parameter.

obt ai n_push_suppl i er (Consuner Adnmi n) -> Proxy
Types:
Consumer Admin = #objr ef
Proxy = #objref
The object created by this function is a proxy which accepts#any{} events.

destroy(Consuner Adnmi n) -> ok
Types:
Consumer Admin = #objr ef
To terminate the target object this operation should be used. The associated Channel will be notified.

34 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SupplierAdmin

CosNotifyChannelAdmin_SupplierAdmin

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:
* CosNatification_QoSAdmin

e CosNotifyComm_NotifyPublish
e CosNotifyFilter_FilterAdmin

Exports

_get Myl D(SupplierAdmn) -> AdminlD
Types.

Supplier Admin = #objref

AdminID =long()

When a Suppl i er Adm n object is created it is given a unique Id by the creating channel. This readonly attribute
maintains this Id.

_get _MyChannel (Suppl i er Adni n) -> Channel
Types:
Supplier Admin = #objr ef
Channel = #objref
The creating channel's reference is maintained by this readonly attribute.

_get _MyOperator(SupplierAdm n) -> OpType
Types:
Supplier Admin = #objref
OpType="'AND_OF' |'OR_OF
The Operation Type, which determines the semantics the target object will use for any associated Fi |l ters, is
maintained by this readonly attribute.

_get _pull _consuners(SupplierAdnin) -> Proxyl DSeq
Types.
Supplier Admin = #objref
Proxyl DSeq = [Proxyl D]
Proxyl D =long()
A sequence of all associated Pul | Pr oxy Id'sis maintained by this readonly attribute.

_get _push_consuner s(Supplier Adnin) -> Proxyl DSeq

Types:
Supplier Admin = #objr ef

Ericsson AB. All Rights Reserved.: cosNotification | 35

CosNotifyChannelAdmin_SupplierAdmin

Proxyl DSeq = [Proxyl D]
Proxyl D =long()
This operation returns all PushPr oxy Id's created by the target object.

get _proxy_consuner (Suppl i er Admin, ProxylD) -> Reply
Types:
Supplier Admin = #objr ef
Proxyl D =long()
Reply = Proxy | {'EXCEPTION', # CosNotifyChannel Admin_ProxyNotFound'{}}
Proxy = #objref
The Proxy which corresponds to the given Id is returned by this operation.

obtain_notification_pull _consuner(SupplierAdm n, SupplierType) -> Reply
Types:

Supplier Admin = #objref

SupplierType="ANY_EVENT' |'STRUCTURED_EVENT' |'SEQUENCE_EVENT'

Reply = {Proxy, Proxyl D}

Proxy = #objref

Proxyl D =long()

This operation creates anew proxy and returnsits object reference along with itsID. The Suppl i er Type parameter
determines the event type accepted by the proxy.

obt ai n_pul | _consuner (Suppl i er Adm n) -> Proxy
Types:

Supplier Admin = #objr ef

Proxy = #objref
A proxy which accepts#any{} eventsis created by this operation.

obtain_notification_push _consuner(SupplierAdm n, SupplierType) -> Reply
Types.

Supplier Admin = #objref

SupplierType="ANY_EVENT' |'STRUCTURED_EVENT' |'SEQUENCE_EVENT'

Reply = {Proxy, Proxyl D}

Proxy = #objref

Proxyl D =long()

Determined by the Suppl i er Type parameter a compliant proxy is created and its object reference along with its
Id isreturned by this operation.

obt ai n_push_consumer (Suppl i er Adni n) -> Proxy
Types:

Supplier Admin = #obj ref

Proxy = #objref
A proxy which accepts#any{} eventsiscreated by this operation.

36 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SupplierAdmin

destroy(SupplierAdnin) -> ok
Types:
Supplier Admin = #objr ef
This operation terminates the SupplierAdmin object and notifies the creating channel that the target object no longer
isactive.

Ericsson AB. All Rights Reserved.: cosNotification | 37

CosNotifyComm_NotifyPublish

CosNotifyComm_ NotifyPublish

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit this interface, export functions described in this module.

Exports

of fer _change(oj ect, Added, Renoved) -> Reply
Types:
Object = #objref
Added = Removed = EventTypeSeq
EventTypeSeq = [type]
Reply = ok | {'EXCEPTION', CosNotifyComm_l| nvalidEventType{type}}
type = # CosNotification_EventType' {domain_name, type_name}
domain_name = type_name = string()
Objects supporting thisinterface can beinformed by supplier objects about which type of eventsthat will be delivered

in the future. This operation accepts two parameters describing new and old event types respectively. If any of the
supplied event type names is syntactically incorrect an exception is raised.

38| Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyComm_NotifySubscribe

CosNotifyComm_ NotifySubscribe

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit thisinterface, export functions described in this module.

Exports

subscri pti on_change(Obj ect, Added, Renoved) -> Reply
Types:
Object = #objref
Added = Removed = EventTypeSeq
EventTypeSeq = [type]
Reply = ok | {'EXCEPTION', CosNotifyComm_l nvalidEventType{type}}
type = # CosNotification_EventType' {domain_name, type_name}
domain_name = type_name = string()
This operation takes as input two sequences of event type names specifying events the client will and will not accept
in the future respectively.

Ericsson AB. All Rights Reserved.: cosNotification | 39

CosNotifyFilter_FilterAdmin

CosNotifyFilter_FilterAdmin

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

All objects, which inherit this interface, export functions described in this module.

Exports

add filter(Qoject, Filter) -> FilterlD

Types:
Object = #objref
Filter = #objref

FilterID = long()

This operation connects a new Fi | t er to the target object. This Fi | t er will, together with other associated
Fi | t ers, be used to select events to forward. A unique Id is returned and should be used if we no longer want to
consult thegivenFi | t er .

renove_filter(Chject, FilterID) -> ok

Types:
Object = #objref
FilterID =long()

If acertainFi | t er nolonger should be associated with the target object this operation must be used. Events will no
longer betested against the Fi | t er associated with the given Id.

get filter(Cbject, FilterlD) -> Reply
Types.
Object = #objref
FilterID =long()
Reply = Filter | {{EXCEPTION', # CosNotifyFilter_FilterNotFound'{}}
Filter = #objref
If the target object is associated with a Fi | t er matching the given Id the reference will be returned. If no such
Fi | t er isknown by the target object an exception is raised.

get _all _filters(Qoject) -> Filterl DSeq
Types:
Object = #objref
FilterIDSeq = [Filter1 D]
FilterID =long()
Id'sfor al Fi | t er objectsassociated with the target object is returned by this operation.

remove_all _filters(Object) -> ok
Types:

40 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_FilterAdmin

Object = #objref

If wewant to remove al Fi | t er s associated with the target object we can use this function.

Ericsson AB. All Rights Reserved.: cosNotification | 41

CosNotifyFilter_FilterFactory

CosNotifyFilter_FilterFactory

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

Exports

create filter(FilterFactory, Grammar) -> Reply
Types:
Filter Factory = #objref
Grammar = string()
Reply = Filter | {'EXCEPTION', # CosNotifyFilter _InvalidGrammar'{}}
Filter = #objref

This operation creates a new Filter object, under the condition that Grammar given is supported. Currently, only
" EXTENDED_TCL" issupported.

create _mapping_filter(FilterFactory, Gammar) -> Reply
Types.
Filter Factory = #objref
Grammar = string()
Reply = MappingFilter | {{ EXCEPTION', # CosNatifyFilter _InvalidGrammar'{}}
Filter = #objref
This operation creates a new MappingFilter object, under the condition that Grammar given is supported. Currently,
only " EXTENDED_TCL" is supported.

42 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_Filter

CosNotifyFilter Filter

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

Exports

_get_constraint_grammar(Filter) -> G amar
Types:
Filter = #objref
Grammar = string()
This operation returns which type of Grammar the Filter uses. Currently, only " EXTENDED TCL" is supported.

add_constraints(Filter, Constraint ExpSeq) -> Reply
Types.
Filter = #objref
ConstraintExpSeq = [Constraint]
ConstraintExp = # CosNotifyFilter_ConstraintExp'{event_types, constraint_expr}
event_types = # CosNotification_EventTypeSeq'{}
constraint_expr = string()
Reply = ConstraintinfoSeq | { EXCEPTION', # CosNotifyFilter_InvalidConstraint'{constr}}
constr = ConstraintExp
ConstraintlnfoSeq = [ConstraintInfo]
Constraintlnfo = # CosNotifyFilter_Constraintlnfo'{constraint_expression, constraint_id}
constraint_expression = ConstraintExp
constraint_id = long()
Initially, Filters do not contain any constraints, hence, all events will be forwarded. The add_constrai nt s/ 2
operation allow usto add constraints to the target object.

nmodi fy_constraints(Filter, ConstraintlDSeq, ConstraintlnfoSeq) -> Reply
Types:

Filter = #objref

Constraintl DSeq = [Constraint| D]

Constraintl D = long()

ConstraintlnfoSeq = [Constrainti nfo]

Constraintlnfo = # CosNotifyFilter_Constraintlnfo'{constraint_expression, constraint_id}

constraint_expression = ConstraintExp

constraint_id = long()

Reply = ok | {'EXCEPTION', # CosNotifyFilter InvalidConstraint'{constr}} | {{ EXCEPTION',
CosNotifyFilter_ConstraintNotFound'{id}}

constr = ConstraintExp
id =long()

Ericsson AB. All Rights Reserved.: cosNotification | 43

CosNotifyFilter_Filter

ConstraintExp = # CosNotifyFilter _ConstraintExp'{event_types, constraint_expr}

event_types = # CosNotification EventTypeSeq'{}

constraint_expr = string()
Thisoperationisinvoked by aclient in order to modify the constraints associated with the target object. The constraints
related to the Id's in the parameter sequence Const r ai nt | DSeq will, if al values are valid, be deleted. The

Const r ai nt | nf 0Seq parameter contains of 1d-Expression pairs and a constraint matching one of the unique Id's
will, if al input values are correct, be updated. If the parameters contain incorrect data en exception will be raised.

get _constraints(Filter, ConstraintlDSeq) -> Reply
Types:
Filter = #objref
Constraintl DSeq = [Constraint| D]
Constraintl D =long()
Reply = ConstraintInfoSeq | {' EXCEPTION', # CosNotifyFilter _ConstraintNotFound'{id}}
ConstraintlnfoSeq = [Constraintl nfo]
Constraintlnfo = # CosNotifyFilter_Constraintlnfo'{constraint_expression, constraint_id}
constraint_expression = ConstraintExp
constraint_id = id = long()
This operation return a sequence of Constraintinfo's, related to the given ConstraintlD's, associated with the target
object.

get _all _constraints(Filter) -> ConstraintlnfoSeq
Types:
Filter = #objref
ConstraintlnfoSeq = [Constraintl nfo]
Constraintlnfo = # CosNotifyFilter_Constraintlnfo'{constraint_expression, constraint_id}
constraint_expression = ConstraintExp
constraint_id = long()
All constraints, and their unique Id, associated with the target object will be returned by this operation.

renmove_all _constraints(Filter) -> ok
Types:
Filter = #objref
All constraints associated with the target object are removed by this operation and, since the the target object no longer
contain any constraints, true will always be the result of any match operation.

destroy(Filter) -> ok
Types:
Filter = #objref
This operation terminates the target object.

match(Filter, Event) -> Reply

Types:
Filter = #objref

44 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_Filter

Event = #any
Reply = boolean() | {' EXCEPTION', # CosNotifyFilter_UnsupportedFilterableData'{}}

This operation accepts an #any{} event and returnst r ue if it satisfies at least one constraint. If the event contains
data of the wrong type, e.g., should be a string() but in fact i a short(), an exception is raised.

mat ch_structured(Filter, Event) -> Reply
Types:
Filter = #objref
Event = # CosNotification_StructuredEvent'{}
Reply = boolean() | {' EXCEPTION', # CosNotifyFilter_UnsupportedFilterableData'{}}

This operation is similar to the mat ch operation but accepts structured events instead.

attach_cal | back(Filter, NotifySubscribe) -> CallbacklD
Types.

Filter = #objref

NotifySubscribe = #objr ef

Callbackl D =long()

This operation connects a NotifySubscribe object, which should be informed when the target object's constraints are
updated. A unique Id is returned which must be stored if we ever want to detach the callback object in the future.

detach_cal | back(Filter, CallbacklD) -> Reply
Types.
Filter = #objref
Callbackl D =long()
Reply = ok | {'EXCEPTION', # CosNotifyFilter _CallbackNotFound'{}}

If the target object has an associated callback that matches the supplied Id it will be removed and longer informed of
any updates. If no object with amatching Id isfound an exception is raised.

get _cal I backs(Filter) -> Call backl DSeq
Types.

Filter = #objref

Callbackl DSeq = [CallbackI D]

Callbackl D =long()

This operation returns a sequence of all connected NotifySubscribe object 1d's. If no callbacks are associated with the
target object the list will be empty.

Ericsson AB. All Rights Reserved.: cosNotification | 45

CosNotifyFilter_MappingFilter

CosNotifyFilter_MappingFilter

Erlang module

The main purpose of this module is to match events against associated constraints and return the value for the first
constraint that returns true for the given event. If all constraints return false the default value will be returned.

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*. hrl").

Exports

_get _constrai nt_granmar (Mappi ngFilter) -> G amar
Types:

M appingFilter = #objref

Grammar =string()

This operation returns which type of Grammar the MappingFilter uses. Currently, only " EXTENDED TCL" is
supported.

_get _val ue_type(Mappi ngFilter) -> CORBA: : TypeCode
Types:
MappingFilter = #objref
This readonly attribute maintains the CORBA: : Ty peCode of the default value associated with the target object.

_get _default_val ue(Mappi ngFilter) -> #any
Types:
M appingFilter = #objref
Thisreadonly attribute maintains the #any{ } default value associated with the target object.

add_nappi ng_constrai nt s(Mappi ngFi I ter, Mappi ngConstraintPairSeq) -> Reply
Types:
M appingFilter = #objref
M appingConstraintPair Seq = [M appingConstraintPair]
MappingConstraintPair = # CosNotifyFilter MappingConstraintPair'{constraint_expression,
result_to_ set}
constraint_expression = # CosNotifyFilter _ConstraintExp'{event_types, constraint_expr}
event_types = # CosNotification_EventTypeSeq'{}
constraint_expr = string()
result_to_set = #any
Reply = MappingConstraintInfoSeq | {'EXCEPTION', #CosNotifyFilter_InvalidConstraint'{constr}} |
{'EXCEPTION', # CosNotifyFilter InvalidValu€ {constr, value}}
constr = ConstraintExp
ConstraintExp = # CosNotifyFilter ConstraintExp'{event_types, constraint_expr}
event_types = # CosNotification_EventTypeSeq'{}
constraint_expr = string()

46 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_MappingFilter

M appingConstraintl nfoSeqg = [M appingConstraintinfo]

M appingConstraintl nfo = # CosNotifyFilter_MappingConstraintl nfo'{constraint_expression,
constraint_id, value}

constraint_expression = ConstraintExp

constraint_id = long()

value = #any

This operation add new mapping constraints, which will be used when trying to override Quality of Service settings
defined in the given event. If aconstraint return true the associated value will be returned, otherwise the default value.

nodi fy_constrai nt s(Mappi ngFilter, Constraintl DSeq, Mappi ngConstraintlnfoSeq)
-> Reply
Types.
M appingFilter = #objref
Constraintl DSeq = [Constraint| D]
Constraintl D = long()
M appingConstraintl nfoSeqg = [M appingConstrainti nfo]
M appingConstr aintl nfo = # CosNotifyFilter_MappingConstraintl nfo'{constraint_expression,
constraint_id, value}
constraint_expression = ConstraintExp
constraint_id = long()
value = #any
ConstraintlnfoSeq = [ConstraintInfo]
Constraintlnfo = # CosNotifyFilter_Constraintl nfo'{constraint_expression, constraint_id}
constraint_expression = ConstraintExp
constraint_id = long()

Reply = ok | {'EXCEPTION', # CosNotifyFilter_InvalidConstraint'{constr}} | {'EXCEPTION',
CosNotifyFilter_ConstraintNotFound'{id}} | {'EXCEPTION', # CosNotifyFilter _InvalidValue' {constr,
value}}

constr = ConstraintExp

id =long()

value = #any

ConstraintExp = # CosNotifyFilter _ConstraintExp'{event_types, constraint_expr}

event_types = # CosNotification_EventTypeSeq'{}

constraint_expr = string()
The Const r ai nt | DSeq supplied should relate to constraints the caller wishesto remove. If any of the supplied Id's
are not found an exception will be raised. This operation also accepts a sequence of Mappi ngConst r ai nt | nf o

which will be added. If the target object cannot modify the constraints as requested an exception is raised describing
which constraint, and why, could not be updated.

get _nmappi ng_constrai nts(Mappi ngFilter, ConstraintlDSeq) -> Reply
Types:

M appingFilter = #objr ef

Constraintl DSeq = [Constraint| D]

Constraintl D = long()

Ericsson AB. All Rights Reserved.: cosNotification | 47

CosNotifyFilter_MappingFilter

Reply = MappingConstraintlnfoSeq | { EXCEPTION', # CosNotifyFilter _ConstraintNotFound'{id}}
M appingConstraintl nfoSeq = [M appingConstraintl nfo]

MappingConstraintlnfo = # CosNotifyFilter_MappingConstraintl nfo'{constraint_expression,
constraint_id, value}

constraint_expression = ConstraintExp

ConstraintExp = # CosNotifyFilter _ConstraintExp'{event_types, constraint_expr}

event_types = # CosNotification_EventTypeSeq'{}

constraint_expr = string()

constraint_id = id = long()

value = #any

When adding a new constraint a unique Id is returned, which is accepted as input for this operation. The associated
constraint is returned, but if no such Id exists an exception is raised.

get _al |l _mappi ng_constrai nts(Mappi ngFilter) -> Mappi ngConstrai ntlnfoSeq
Types:
M appingFilter = #objr ef
M appingConstraintl nfoSeq = [M appingConstraintinfo]
M appingConstraintlnfo = # CosNotifyFilter_MappingConstraintl nfo'{constraint_expression,
constraint_id, value}
constraint_expression = ConstraintExp
ConstraintExp = # CosNotifyFilter _ConstraintExp'{event_types, constraint_expr}
event_types = # CosNotification_EventTypeSeq'{}
constraint_expr = string()
constraint_id = long()
value = #any
This operation returns a sequence of all unique Id's associated with the target object. If no constraint have been added
the sequence will be empty.

renmove_al | _nmappi ng_constrai nts(MappingFilter) -> ok
Types:

M appingFilter = #objref
This operation removes all constraints associated with the target object.

dest roy(Mappi ngFilter) -> ok
Types:
M appingFilter = #objref
This operation terminates the target object. Remember to remove this Filter from the objects it have been associated
with.

mat ch(Mappi ngFilter, Event) -> Reply
Types:
M appingFilter = #objr ef
Event = #any
Reply = {boolean(), #any} | {{ EXCEPTION', # CosNotifyFilter_UnsupportedFilterableData'{}}

48 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyFilter_MappingFilter

This operation evaluates Any eventswith the Filter's constraints, and returns the value to use. The value isthe default
valueif all constraints returns false and the val ue associated with the first constraint returning true.

mat ch_structured(Mappi ngFilter, Event) -> Reply
Types:
M appingFilter = #objref
Event = # CosNotification_StructuredEvent'{}
Reply = {boolean(), #any} | { EXCEPTION', # CosNotifyFilter _UnsupportedFilterableData'{}}

Similar to mat ch/ 2 but accepts a structured event as inpult.

Ericsson AB. All Rights Reserved.: cosNotification | 49

CosNotifyChannelAdmin_ProxyConsumer

CosNotifyChannelAdmin_ProxyConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

« CosNatification_QoSAdmin
* CosNotifyFilter_FilterAdmin

Exports

_get _MType(ProxyConsuner) -> ProxyType

Types:
ProxyConsumer = #objref
ProxyType="PUSH_ANY"' |'PULL_ANY' |'PUSH_STRUCTURED' |'PULL_STRUCTURED' |
'"PUSH_SEQUENCE' | 'PULL_SEQUENCE'

This readonly attribute maintains the enumerant describing the which type the target object is.

_get _MyAdmi n(ProxyConsuner) -> Adm nCbj ect
Types:
ProxyConsumer = AdminObject = #objr ef
This readonly attribute maintains the admin's reference which created the target object.

obt ai n_subscri ption_t ypes(ProxyConsuner, ObtainlnfoMde) -> Event TypeSeq
Types:
ProxyConsumer = #objref

ObtaininfoMode ='ALL_NOW_UPDATES OFF' |'ALL_NOW_UPDATES_ON' |
'NONE_NOW_UPDATES OFF' |'NONE_NOW_UPDATES ON'

EventTypeSeq = [Event Type]

EventType = # CosNoatification_EventType {domain_name, type name}

domain_name = type_name = string()
Depending on the input parameter Cbt ai nl nf oMbde, this operation may return a sequence of the Event Types
thetarget object isinterested inreceiving. If * ALL_NOW UPDATES_OFF' or' ALL_NOW UPDATES ON isgiven
a sequence will be returned, otherwise not. If * ALL_NOW UPDATES OFF' or ' NONE_NOW UPDATES_COFF'

are issued the target object will not inform the associated Not i f ySubscri be object when an update occurs.
" ALL_NOW UPDATES_ON or' NONE_NOW UPDATES_ON will result in that update information will be sent.

val i dat e_event _gos(ProxyConsuner, QoSProperties) -> Reply
Types:

ProxyConsumer = #objref

QoSProperties = [QoSProperty]

QoSProperty = # CosNatification_Property'{name, value}

name = string()

50 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyConsumer

value = #any

Reply = {ok, NamedPropertyRangeSeq} | {' EXCEPTION', CosNotification_UnsupportedQoS{qos_err}}
NamedPr opertyRangeSeq = [NamedPropertyRange]

NamedPr opertyRange = #CosNotification_NamedPr opertyRange{name, range}
name = string()

range = #CosNotification_PropertyRange{low_val, high_val}

low_val = #any

high_val = #any

qos_err = PropertyError Seq

PropertyErrorSeq = [PropertyError]

PropertyError = # CosNotification_PropertyError'{code, name, available range}

code = "UNSUPPORTED_PROPERTY' | 'UNAVAILABLE_PROPERTY" |'UNSUPPORTED_VALUE'
| ' UNAVAILABLE_VALUE' |'BAD_PROPERTY' |'BAD_TYPE' |'BAD_VALUE'

name = string()

available range = PropertyRange

PropertyRange = #CosNotification_PropertyRange{low_val, high_val}
low_val = high_val = #any

To check if certain Quality of Service properties can be added to eventsin the current context of the target object this
operation should be used. If we cannot support the required settings an exception describing why will be raised.

Ericsson AB. All Rights Reserved.: cosNotification | 51

CosNotifyChannelAdmin_ProxySupplier

CosNotifyChannelAdmin_ProxySupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

« CosNatification_QoSAdmin
* CosNotifyFilter_FilterAdmin

Exports

_get _MyType(ProxySupplier) -> ProxyType

Types:
ProxySupplier = #objref
ProxyType="PUSH_ANY"' |'PULL_ANY' |'PUSH_STRUCTURED' |'PULL_STRUCTURED' |
'"PUSH_SEQUENCE' | 'PULL_SEQUENCE'

This readonly attribute maintains the enumerant describing the which type the target object is.

_get _MyAdmi n(ProxySupplier) -> Adm nCbj ect
Types:
ProxySupplier = #objref
AdminObject = #objr ef
This readonly attribute maintains the admin's reference which created the target object.

_get_priority_filter(ProxySupplier) -> MappingFilter
Types:
ProxySupplier = #objr ef
M appingFilter = #objref
This operation returns the associated priority MappingFilter. If no such object exist aNI L referenceis returned.

_set _priority_filter(ProxySupplier, MappingFilter) -> ok
Types:

ProxySupplier = #objref

MappingFilter = #objref
This operation associate a new priority MappingFilter with the target object.

_get lifetime filter(ProxySupplier) -> MappingFilter
Types:
ProxySupplier = #objref
M appingFilter = #objref
This operation returns the associated lifetime MappingFilter. If no such object exist aNI L referenceis returned.

52 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxySupplier

_set lifetime filter(ProxySupplier, MappingFilter) -> ok
Types:

ProxySupplier = #objr ef

M appingFilter = #objref
This operation associate a new lifetime MappingFilter with the target object.

obt ai n_of fered_t ypes(ProxySupplier, otainlnfoMde) -> Event TypeSeq
Types:
ProxySupplier = #objr ef
ObtaininfoMode="ALL_NOW_UPDATES OFF' |'ALL_NOW_UPDATES_ON' |
'NONE_NOW_UPDATES OFF' |'NONE_NOW_UPDATES ON'
EventTypeSeq = [Event Type]
EventType = # CosNotification_EventType' {domain_name, type name}
domain_name = type_name = string()
Depending on the input parameter Cbt ai nl nf oMbde, this operation may return a sequence of the Event Types
thetarget object isinterested inreceiving. If * ALL_NOW UPDATES_OFF' or' ALL_NOW UPDATES ON isgiven
a sequence will be returned, otherwise not. If " ALL_NOW UPDATES OFF' or ' NONE_NOW UPDATES_ COFF'

are issued the target object will not inform the associated Not i f ySubscri be object when an update occurs.
" ALL_NOW UPDATES_ON or' NONE_NOW UPDATES_ON will result in that update information will be sent.

val i dat e_event _gos(ProxySupplier, QoSProperties) -> Reply
Types:

ProxySupplier = #objref

QoSProperties = [QoSProperty]

QoSProperty = # CosNatification_Property'{name, value}

name = string()

value = #any

Reply = {ok, NamedPropertyRangeSeq} | { EXCEPTION', CosNotification_UnsupportedQoS{qos err}}

NamedPr opertyRangeSeq = [NamedPropertyRange]

NamedPr opertyRange = #CosNotification_NamedPr opertyRange{name, range}

name = string()

range = #CosNotification_PropertyRange{low_val, high_val}

low_val = #any

high_val = #any

qos err = PropertyErrorSeq

PropertyError Seq = [PropertyError]

PropertyError = # CosNotification_PropertyError'{code, name, available range}

code = "UNSUPPORTED_PROPERTY"' | 'UNAVAILABLE_PROPERTY"' |'UNSUPPORTED_VALUE'
[' UNAVAILABLE_VALUE' |'BAD_PROPERTY' |'BAD_TYPE' |'BAD_VALUE'

name = string()

available range = PropertyRange

PropertyRange = #CosNotification_PropertyRange{low_val, high_val}
low_val = high_val = #any

Ericsson AB. All Rights Reserved.: cosNotification | 53

CosNotifyChannelAdmin_ProxySupplier

To check if certain Quality of Service properties can be added to eventsin the current context of the target object this
operation should be used. If we cannot support the required settings an exception describing why will be raised.

54 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyPullConsumer

CosNotifyChannelAdmin_ProxyPullConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNotifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect _any_pul | _supplier (ProxyPul | Consuner, Pull Supplier) -> Reply
Types:
ProxyPullConsumer = #objref
PullSupplier = #objr ef
Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}} | {{ EXCEPTION',
CosEventChannel Admin_TypeError'{}}

This operation connects the given Pul | Suppl i er to the target object. If a client is already connected the
Al r eadyConnect ed exception will be raised. The client must support the operations pul | andtry_pul I,
otherwisethe TypeEr r or exceptionisraised.

suspend_connecti on(ProxyPul | Consuner) -> Reply

Types:
ProxyPullConsumer = #objref
Reply = ok | {'EXCEPTION', # CosNotifyChannel Admin_ConnectionAlr eadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

If we want to temporarily suspend the connection with the target object this operation must be sued. If the connection
already have been suspended or no client have been connected an exception is raised.

resune_connecti on(ProxyPul | Consuner) -> Reply

Types:
ProxyPullConsumer = #objref
Reply = ok | {'EXCEPTION', # CosNotifyChannelAdmin_ConnectionAlreadyActive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

If The connection have been suspended earlier we can invoke this operation to reinstate the connection. If the
connection already is active or no client have been connected to the target object an exception is raised.

di sconnect _pul | _consuner (ProxyPul | Consuner) -> ok

Types:
ProxyPullConsumer = #objref

Ericsson AB. All Rights Reserved.: cosNotification | 55

CosNotifyChannelAdmin_ProxyPullConsumer

Invoking this operation disconnectsthe client from the target obj ect which then terminatesand informitsadministrative
parent.

56 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyPullSupplier

CosNotifyChannelAdmin_ProxyPullSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNotifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxySupplier

Exports

connect _any_pul | _consuner (ProxyPul | Supplier, Pull Consumer) -> Reply
Types:

ProxyPullSupplier = #objr ef

PullConsumer = #objr ef

Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects the given Pul | Consuner to the target object. If a connection already exists the
Al r eadyConnect ed exception israised.

pul I (ProxyPul | Supplier) -> Reply
Types:
ProxyPullSupplier = #objr ef
Reply = #any | {EXCEPTION', # CosEventChannel Admin_Disconnected'{}}

Thisoperation pullsnext #any{ } event, and blocks, if the target object have no eventsto forward, until an event can
be delivered. If no client have been connected the Di sconnect ed exception is raised.

try pull (ProxyPul | Supplier) -> Reply

Types.
ProxyPullSupplier = #objr ef
Reply = {#any, HasEvent} | {'EXCEPTION', # CosEventChannel Admin_Disconnected'{}}
HasEvent = boolean()

This operation pulls next event, but do not block if the target object have no event to forward. If no client have been
connected the Di sconnect ed exception israised.

di sconnect _pul |l _supplier(ProxyPul | Supplier) -> ok
Types:
ProxyPullSupplier = #objr ef
Invoking this operation will cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 57

CosNotifyChannelAdmin_ProxyPushConsumer

CosNotifyChannelAdmin_ProxyPushConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:
e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect _any_push_suppl i er (ProxyPushConsuner, PushSupplier) -> Reply
Types:

ProxyPushConsumer = #objref

PushSupplier = #objr ef

Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects a PushSupplier to the target object. If a connection aready exists the
Al r eadyConnect ed exception israised.

push(ProxyPushConsuner, Event) -> Reply
Types:
ProxyPushConsumer = #objref
Event = #any
Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_Disconnected'{}}

This operation pushes an #any{} event to the target object. If no client have been connected the Di sconnect ed
exception israised.

di sconnect _push_consuner (ProxyPushConsuner) -> ok
Types:
ProxyPushConsumer = #objref
Invoking this operation will cause the target object to close the connection and terminate.

58 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_ProxyPushSupplier

CosNotifyChannelAdmin_ProxyPushSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNotifyFilter_FilterAdmi

e CosNotifyChannel Admin_ProxySupplier

Exports

connect _any_push_consuner (ProxyPushSuppl i er, PushConsumer) -> Reply
Types:
ProxyPushSupplier = #objr ef
PushConsumer = #objr ef
Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}} | {{ EXCEPTION',
CosEventChannel Admin_TypeError'{}}

This operation connectsaPushConsuner to thetarget object. If aconnection already exists or the given client does
not support the operation push an exception, Al r eadyConnect ed and TypeEr r or respectively, is raised.

suspend_connecti on(ProxyPushSupplier) -> Reply

Types:
ProxyPushSupplier = #objref
Reply = ok | {'EXCEPTION', # CosNotifyChannel Admin_ConnectionAlr eadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

This operation suspends the connection with the client object. If the connection already is suspended or no client have
been associated an exception is raised.

resunme_connecti on(ProxyPushSupplier) -> Reply
Types.
ProxyPullConsumer = #objref

Reply = ok | {'EXCEPTION', # CosNotifyChannelAdmin_ConnectionAlreadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

If aconnection have been suspended earlier, calling thisoperation will resumethe connection. If the connection already
is active or no client have been connected an exception is rai sed.

di sconnect _push_suppl i er (ProxyPushSupplier) -> ok
Types:

ProxyPushSupplier = #abjr ef
This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 59

CosNotifyChannelAdmin_SequenceProxyPullConsumer

CosNotifyChannelAdmin_SequenceProxyPullConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect _sequence_pul | _suppl i er (SequenceProxyPul | Consunmer, Pull Supplier) ->
Reply
Types:
SequenceProxyPullConsumer = #objr ef
PullSupplier = #objr ef
Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}} | {{ EXCEPTION',
CosEventChannel Admin_TypeError'{}}

This operation connects a Pul | Suppl i er to the target object. If a connection aready exists or the supplied
client does not support the functionspul | _structured_events andtry_pull _structured_events an
exception israised.

suspend_connecti on(SequencePr oxyPul | Consuner) -> Reply

Types:
SequenceProxyPullConsumer = #objr ef
Reply = ok | {'EXCEPTION', # CosNotifyChannel Admin_ConnectionAlr eadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

If a connection exist, invoking this operation will suspend the connection until instructed otherwise. Otherwise, no
client have been connected or this operation already have been invoked an exception is raised.

resune_connecti on(SequencePr oxyPul | Consurer) -> Reply

Types:
SequenceProxyPullConsumer = #objr ef
Reply = ok | {'EXCEPTION', # CosNotifyChannelAdmin_ConnectionAlreadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

If an connection have been suspended this operation must be used to resume the connection. If the connection already
is active or no client have been connected an exception is raised.

di sconnect _sequence_pul | _consuner (SequencePr oxyPul | Consuner) -> ok

Types:
SequenceProxyPullConsumer = #objr ef

60 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPullConsumer

This operation close the connection to the client and terminates the target object.

Ericsson AB. All Rights Reserved.: cosNotification | 61

CosNotifyChannelAdmin_SequenceProxyPullSupplier

CosNotifyChannelAdmin_SequenceProxyPullSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

» CosNotifyChannel Admin_ProxySupplier

Exports

connect _sequence_pul | _consuner (SequencePr oxyPul | Supplier, Pull Consuner) ->
Reply
Types:

SequenceProxyPullSupplier = #objr ef

PullConsumer = #objr ef

Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}}

This operation connectsaPul | Consuner to the target object. If a connection already exists an exception is raised.

pul | _structured_event s(SequenceProxyPul | Supplier, MaxEvents) -> Reply
Types:
SequenceProxyPullSupplier = #objr ef
MaxEvents = long()
Reply = EventBatch | {'EXCEPTION', # CosEventChannelAdmin_Disconnected'{}}
EventBatch = [StructuredEvent]
StructuredEvent = # CosNoatification_StructuredEvent'{header, filterable_data, remainder_of body}
header = EventHeader
filterable data = [# CosNotification_Property'{name, value}]
name = string()
value = #any
remainder_of body = #any
EventHeader = # CosNotification_EventHeader'{fixed_header, variable _header}
fixed_header = FixedEventHeader
variable_header = OptionalHeader Fields
FixedEventHeader = # CosNatification_FixedEventHeader'{event_type, event_name}
event_type = EventType
event_name = string()
EventType = # CosNoatification_EventType'{domain_name, type name}
domain_name = type_name = string()
OptionalHeader Fields = [# CosNotification_Property'{name, value}]

62 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPullSupplier

A client use this operation to pull next event sequence of maximum length MaxEvent s. This operation is blocking
and will not reply until the requested amount of events can be delivered or the QoS property Paci ngl nt er val is
reached. For more information seethe User' s CGui de.

try_pull _structured_event s(SequenceProxyPul | Supplier, MaxEvents) -> Reply
Types:

SequenceProxyPullSupplier = #objr ef

M axEvents = long()

Reply = {EventBatch, HasEvent} | {'EXCEPTION', # CosEventChannelAdmin_Disconnected'{}}

HasEvent = boolean()

EventBatch = [StructuredEvent]

StructuredEvent = # CosNatification_StructuredEvent'{header, filterable data, remainder _of body}

header = EventHeader

filterable data = [# CosNotification_Property'{name, value}]

name = string()

value = #any

remainder_of _body = #any

EventHeader = # CosNotification_EventHeader'{fixed_header, variable_header}

fixed_header = FixedEventHeader

variable_header = OptionalHeader Fields

FixedEventHeader = # CosNatification_FixedEventHeader'{event_type, event_name}

event_type = EventType

event_name = string()

EventType = # CosNatification_EventType {domain_name, type name}

domain_name = type_name = string()

OptionalHeader Fields = [# CosNotification_Property'{name, value}]

Thisoperation pulls an event sequence of the maximum length MaxEvent s, but do not block if the target object have
no events to forward. The outparameter, HasEvent istrueif the sequence contain any events.

di sconnect _sequence_pul | _suppl i er (SequenceProxyPul | Supplier) -> ok
Types:

SequenceProxyPullSupplier = #objr ef
This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 63

CosNotifyChannelAdmin_SequenceProxyPushConsumer

CosNotifyChannelAdmin_SequenceProxyPushConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect _sequence_push_suppl i er (SequencePr oxyPushConsumer, PushSupplier) ->
Reply
Types:

SequenceProxyPushConsumer = #objr ef

PushSupplier = #objr ef

Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects a PushSupplier to the target object. If a connection aready exists the
Al r eadyConnect ed exception israised.

push_struct ured_event s(SequencePr oxyPushConsumner, EventBatch) -> Reply
Types:

SequenceProxyPushConsumer = #objr ef

EventBatch = [StructuredEvent]

StructuredEvent = # CosNatification_StructuredEvent'{header, filterable data, remainder_of body}

header = EventHeader

filterable data = [# CosNotification_Property'{name, value}]

name = string()

value = #any

remainder_of body = #any

EventHeader = # CosNotification_EventHeader'{fixed_header, variable_header}

fixed_header = FixedEventHeader

variable_header = OptionalHeader Fields

FixedEventHeader = # CosNoatification_FixedEventHeader'{event_type, event_name}

event_type = EventType

event_name = string()

EventType = # CosNoatification_EventType'{domain_name, type nhame}

domain_name = type_name = string()

OptionalHeader Fields = [# CosNotification_Property'{name, value}]

Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_Disconnected'{}}

64 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPushConsumer

A client must use this operation when it wishes to push a new segquence of eventsto the target object. If no connection
existsthe Di sconnect ed exception is raised.

di sconnect _sequence_push_consuner (SequencePr oxyPushConsuner) -> ok
Types:

SequenceProxyPushConsumer = #objref
This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 65

CosNotifyChannelAdmin_SequenceProxyPushSupplier

CosNotifyChannelAdmin_SequenceProxyPushSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

» CosNotifyChannel Admin_ProxySupplier

Exports

connect _sequence_push_consuner (SequencePr oxyPushSuppl i er, PushConsuner) ->
Reply
Types:
SequenceProxyPushSupplier = #objr ef
PushConsumer = #objr ef
Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}} | {{ EXCEPTION',
CosEventChannel Admin_TypeError'{}}

This operation connects a PushConsuner to the target object. If a connection aready exists or the function
psuh_structured_events is not supported the exceptions Al r eadyConnect ed or TypeError will be
raised respectively.

suspend_connecti on(SequencePr oxyPushSupplier) -> Reply

Types:
SequenceProxyPushSupplier = #objr ef
Reply = ok | {'EXCEPTION', # CosNotifyChannel Admin_ConnectionAlr eadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

This operation suspends the connection between the client and the target object. If no connection exists or the
connection is already suspended an exception is raised.

resune_connecti on(SequencePr oxyPushSupplier) -> Reply

Types:
SequenceProxyPullConsumer = #objr ef
Reply = ok | {'EXCEPTION', # CosNotifyChannelAdmin_ConnectionAlreadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

If the connection have previously been suspended this operation must used if we want to resume the connection. If no
object have been connected or the connection already is active an exception is raised.

di sconnect _sequence_push_suppl i er (SequencePr oxyPushSupplier) -> ok

Types:
SequenceProxyPushSupplier = #objr ef

66 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_SequenceProxyPushSupplier

This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 67

CosNotifyChannelAdmin_StructuredProxyPullConsumer

CosNotifyChannelAdmin_StructuredProxyPullConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect _structured_pul |l _supplier(StructuredProxyPul | Consumer, Pull Supplier) -
> Reply
Types:

StructuredProxyPullConsumer = #objref

PullSupplier = #objr ef

Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}} | {{ EXCEPTION',

CosEventChannel Admin_TypeError'{}}

Thisoperation connectsaPul | Suppl i er tothetarget object. If aconnection already existsor the given client object
does not support thefunctionspul | _st ruct ured_event andtry_pul | _structured_event anexception
israised.

suspend_connecti on(St ruct uredPr oxyPul | Consuner) -> Reply

Types:
StructuredProxyPullConsumer = #objref
Reply = ok | {'EXCEPTION', # CosNotifyChannel Admin_ConnectionAlr eadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

This operation suspends the connection between the target object and its client. If no connection exists or already
suspended an exception is raised.

resunme_connection(StructuredProxyPul | Consuner) -> Reply

Types:
Structur edProxyPullConsumer = #objr ef
Reply = ok | {'EXCEPTION', # CosNotifyChannelAdmin_ConnectionAlreadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

If the connection have been suspended this operation must be used if we want to resume the connection. If the
connection aready are active or no connection have been created an exception is raised.

di sconnect _structured_pul | _consuner (Struct uredProxyPul | Consuner) -> ok

Types:
StructuredProxyPullConsumer = #objr ef

68 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPullConsumer

This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 69

CosNotifyChannelAdmin_StructuredProxyPullSupplier

CosNotifyChannelAdmin_StructuredProxyPullSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

» CosNotifyChannel Admin_ProxySupplier

Exports

connect _structured_pul | _consuner (St ructuredProxyPul | Supplier, Pull Consuner) -
> Reply
Types:

StructuredProxyPullSupplier = #objr ef

PullConsumer = #objr ef

Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}}

This operation connects a Pul | Consuner to the target object. If a connection aready exists the
Al r eadyConnect ed exception israised.

pul | _structured_event (StructuredProxyPul |l Supplier) -> Reply
Types:
StructuredProxyPullSupplier = #objr ef
Reply = StructuredEvent | {'EXCEPTION', # CosEventChannelAdmin_Disconnected'{}}
StructuredEvent = # CosNatification_StructuredEvent'{header, filterable data, remainder_of body}
header = EventHeader
filterable data = [# CosNotification_Property'{name, value}]
name = string()
value = #any
remainder_of body = #any
EventHeader = # CosNotification_EventHeader'{fixed_header, variable_header}
fixed_header = FixedEventHeader
variable_header = OptionalHeader Fields
FixedEventHeader = # CosNoatification_FixedEventHeader'{event_type, event_name}
event_type = EventType
event_name = string()
EventType = # CosNoatification_EventType'{domain_name, type nhame}
domain_name = type_name = string()
OptionalHeader Fields = [# CosNotification_Property'{name, value}]

70 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPullSupplier

This operation pulls next event from the target object; if an event cannot be delivered this function blocks until an
event arrives.

try_pull _structured_event (StructuredProxyPull Supplier) -> Reply
Types:
StructuredProxyPullSupplier = #objr ef
Reply = {StructuredEvent, HasEvent} | {'EXCEPTION', # CosEventChannel Admin_Disconnected'{}}
HasEvent = boolean()
StructuredEvent = # CosNoatification_StructuredEvent'{header, filterable_data, remainder_of body}
header = EventHeader
filterable data = [# CosNotification_Property'{name, value}]
name = string()
value = #any
remainder_of _body = #any
EventHeader = # CosNotification_EventHeader'{fixed_header, variable_header}
fixed_header = FixedEventHeader
variable_header = OptionalHeader Fields
FixedEventHeader = # CosNatification_FixedEventHeader'{event_type, event_name}
event_type = EventType
event_name = string()
EventType = # CosNoatification_EventType'{domain_name, type _name}
domain_name = type_name = string()
OptionalHeader Fields = [# CosNotification_Property'{name, value}]

This operation try to pull next event from the target object. If no event have arrived an empty event isreturned and the
out parameter HasEvent isset to false. Otherwise, the boolean flag is set to true and an valid event is returned.

di sconnect _structured_pul | _supplier(StructuredProxyPul | Supplier) -> ok
Types:

StructuredProxyPullSupplier = #objr ef
This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 71

CosNotifyChannelAdmin_StructuredProxyPushConsumer

CosNotifyChannelAdmin_StructuredProxyPushConsumer

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifyPublish

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

e CosNotifyChannel Admin_ProxyConsumer

Exports

connect _structured_push_supplier(StructuredProxyPushConsunmer, PushSupplier) -
> Reply
Types:
StructuredProxyPushConsumer = #objr ef
PushSupplier = #objr ef
Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}}
This operation connectsaPushSuppl i er tothetarget object. If a connection already exists an exception is raised.

push_structured_event (StructuredProxyPushConsuner, StructuredEvent) -> Reply
Types:

StructuredProxyPushConsumer = #objr ef

StructuredEvent = # CosNoatification_StructuredEvent'{header, filterable_data, remainder_of body}

header = EventHeader

filterable data = [# CosNotification_Property'{name, value}]

name = string()

value = #any

remainder_of _body = #any

EventHeader = # CosNotification_EventHeader'{fixed_header, variable_header}

fixed_header = FixedEventHeader

variable _header = OptionalHeader Fields

FixedEventHeader = # CosNatification_FixedEventHeader'{event_type, event_name}

event_type = EventType

event_name = string()

EventType = # CosNoatification_EventType'{domain_name, type _name}

domain_name = type_name = string()

OptionalHeader Fields = [# CosNotification_Property'{name, value}]

Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_Disconnected'{}}

When aclient want to push a new event to the target object this operation must be used.

72 | Ericsson AB. All Rights Reserved.: cosNotification

CosNotifyChannelAdmin_StructuredProxyPushConsumer

di sconnect _structured_push_consuner (Struct uredProxyPushConsuner) -> ok
Types:

Structur edProxyPushConsumer = #objr ef
This operation cause the target object to close the connection and terminate.

Ericsson AB. All Rights Reserved.: cosNotification | 73

CosNotifyChannelAdmin_StructuredProxyPushSupplier

CosNotifyChannelAdmin_StructuredProxyPushSupplier

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosNotification/include/*.hrl").

This module also exports the functions described in:

e CosNotifyComm_NotifySubscribe

» CosNotification_QoSAdmin

e CosNatifyFilter_FilterAdmin

» CosNotifyChannel Admin_ProxySupplier

Exports

connect _structured_push_consuner (St ruct uredPr oxyPushSuppl i er, PushConsuner) -
> Reply
Types:

StructuredProxyPushSupplier = #objr ef

PushConsumer = #objr ef

Reply = ok | {'EXCEPTION', # CosEventChannelAdmin_AlreadyConnected'{}} | {{ EXCEPTION',

CosEventChannel Admin_TypeError'{}}

This operation connects a PushConsuner to the target object. If a connection aready exists or the function
push_struct ured_event isnot supported by the client object an exception is raised.

suspend_connecti on(St ruct ur edPr oxyPushSupplier) -> Reply

Types:
StructuredProxyPushSupplier = #objr ef
Reply = ok | {'EXCEPTION', # CosNotifyChannel Admin_ConnectionAlr eadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

This operation suspends the connection with the target object. If no connection exists or the connection already is
suspended an exception is raised.

resunme_connection(Struct uredProxyPushSupplier) -> Reply
Types:
Structur edProxyPullConsumer = #objr ef

Reply = ok | {'EXCEPTION', # CosNotifyChannelAdmin_ConnectionAlreadyl nactive'{}} |
{'EXCEPTION', # CosNotifyChannelAdmin_NotConnected'{}}

If the connection with the target object have been suspended this function must be used to resume the connection. If
no client have been connected or the connection is active an exception is raised.

di sconnect _structured_push_supplier(StructuredProxyPushSupplier) -> ok
Types:

StructuredProxyPushSupplier = #objr ef
This operation cause the target object to close the connection and terminate.

74 | Ericsson AB. All Rights Reserved.: cosNotification

	cosNotification
	User's Guide
	The cosNotification Application
	Content Overview
	Brief Description of the User's Guide

	Introduction to cosNotification
	Overview
	Purpose and Dependencies
	Prerequisites

	Installing cosNotification
	Installation Process
	Preparation
	Configuration

	The Notification Service Components
	The Notification Service Components
	Components

	Filters and the Constraint Language BNF
	Filters and the Constraint Language BNF
	How to create filter objects
	The CosNotification Constraint Language
	The Constraint Language Data Types
	Accessing Data In Events
	Mapping Filters

	Quality Of Service and Admin Properties
	Quality Of Service and Admin Properties
	Quality Of Service
	Setting Quality Of Service
	Admin Properties

	cosNotification Examples
	A Tutorial on How to Create a Simple Service
	Interface Design
	Generating a Client Interface
	How to Run Everything

	Reference Manual
	cosNotificationApp
	install/0
	install/1
	install_event/0
	install_event/1
	uninstall/0
	uninstall/1
	uninstall_event/0
	uninstall_event/1
	start/0
	stop/0
	start_global_factory/0
	start_global_factory/1
	start_factory/0
	start_factory/1
	stop_factory/1
	start_filter_factory/0
	stop_filter_factory/1
	create_structured_event/6
	type_check/0

	CosNotifyChannelAdmin_EventChannelFactory
	create_channel/3
	get_all_channels/1
	get_event_channel/2

	CosNotifyChannelAdmin_EventChannel
	_get_MyFactory/1
	_get_default_consumer_admin/1
	_get_default_supplier_admin/1
	_get_default_filter_factory/1
	new_for_consumers/2
	for_consumers/1
	new_for_suppliers/2
	for_suppliers/1
	get_consumeradmin/2
	get_supplieradmin/2
	get_all_consumeradmins/1
	get_all_supplieradmins/1
	destroy/1

	CosNotification
	'EventReliability'/0
	'BestEffort'/0
	'Persistent'/0
	'ConnectionReliability'/0
	'Priority'/0
	'LowestPriority'/0
	'HighestPriority'/0
	'DefaultPriority'/0
	'StartTime'/0
	'StopTime'/0
	'Timeout'/0
	'OrderPolicy'/0
	'AnyOrder'/0
	'FifoOrder'/0
	'PriorityOrder'/0
	'DeadlineOrder'/0
	'DiscardPolicy'/0
	'LifoOrder'/0
	'RejectNewEvents'/0
	'MaximumBatchSize'/0
	'PacingInterval'/0
	'StartTimeSupported'/0
	'StopTimeSupported'/0
	'MaxEventsPerConsumer'/0
	'MaxQueueLength'/0
	'MaxConsumers'/0
	'MaxSuppliers'/0

	CosNotification_QoSAdmin
	get_qos/1
	set_qos/2
	validate_qos/2

	CosNotification_AdminPropertiesAdmin
	get_admin/1
	set_admin/2

	CosNotifyChannelAdmin_ConsumerAdmin
	_get_MyID/1
	_get_MyChannel/1
	_get_MyOperator/1
	_get_priority_filter/1
	_set_priority_filter/2
	_get_lifetime_filter/1
	_set_lifetime_filter/2
	_get_pull_suppliers/1
	_get_push_suppliers/1
	get_proxy_supplier/2
	obtain_notification_pull_supplier/2
	obtain_pull_supplier/1
	obtain_notification_push_supplier/2
	obtain_push_supplier/1
	destroy/1

	CosNotifyChannelAdmin_SupplierAdmin
	_get_MyID/1
	_get_MyChannel/1
	_get_MyOperator/1
	_get_pull_consumers/1
	_get_push_consumers/1
	get_proxy_consumer/2
	obtain_notification_pull_consumer/2
	obtain_pull_consumer/1
	obtain_notification_push_consumer/2
	obtain_push_consumer/1
	destroy/1

	CosNotifyComm_NotifyPublish
	offer_change/3

	CosNotifyComm_NotifySubscribe
	subscription_change/3

	CosNotifyFilter_FilterAdmin
	add_filter/2
	remove_filter/2
	get_filter/2
	get_all_filters/1
	remove_all_filters/1

	CosNotifyFilter_FilterFactory
	create_filter/2
	create_mapping_filter/2

	CosNotifyFilter_Filter
	_get_constraint_grammar/1
	add_constraints/2
	modify_constraints/3
	get_constraints/2
	get_all_constraints/1
	remove_all_constraints/1
	destroy/1
	match/2
	match_structured/2
	attach_callback/2
	detach_callback/2
	get_callbacks/1

	CosNotifyFilter_MappingFilter
	_get_constraint_grammar/1
	_get_value_type/1
	_get_default_value/1
	add_mapping_constraints/2
	modify_constraints/3
	get_mapping_constraints/2
	get_all_mapping_constraints/1
	remove_all_mapping_constraints/1
	destroy/1
	match/2
	match_structured/2

	CosNotifyChannelAdmin_ProxyConsumer
	_get_MyType/1
	_get_MyAdmin/1
	obtain_subscription_types/2
	validate_event_qos/2

	CosNotifyChannelAdmin_ProxySupplier
	_get_MyType/1
	_get_MyAdmin/1
	_get_priority_filter/1
	_set_priority_filter/2
	_get_lifetime_filter/1
	_set_lifetime_filter/2
	obtain_offered_types/2
	validate_event_qos/2

	CosNotifyChannelAdmin_ProxyPullConsumer
	connect_any_pull_supplier/2
	suspend_connection/1
	resume_connection/1
	disconnect_pull_consumer/1

	CosNotifyChannelAdmin_ProxyPullSupplier
	connect_any_pull_consumer/2
	pull/1
	try_pull/1
	disconnect_pull_supplier/1

	CosNotifyChannelAdmin_ProxyPushConsumer
	connect_any_push_supplier/2
	push/2
	disconnect_push_consumer/1

	CosNotifyChannelAdmin_ProxyPushSupplier
	connect_any_push_consumer/2
	suspend_connection/1
	resume_connection/1
	disconnect_push_supplier/1

	CosNotifyChannelAdmin_SequenceProxyPullConsumer
	connect_sequence_pull_supplier/2
	suspend_connection/1
	resume_connection/1
	disconnect_sequence_pull_consumer/1

	CosNotifyChannelAdmin_SequenceProxyPullSupplier
	connect_sequence_pull_consumer/2
	pull_structured_events/2
	try_pull_structured_events/2
	disconnect_sequence_pull_supplier/1

	CosNotifyChannelAdmin_­SequenceProxyPushConsumer
	connect_sequence_push_supplier/2
	push_structured_events/2
	disconnect_sequence_push_consumer/1

	CosNotifyChannelAdmin_­SequenceProxyPushSupplier
	connect_sequence_push_consumer/2
	suspend_connection/1
	resume_connection/1
	disconnect_sequence_push_supplier/1

	CosNotifyChannelAdmin_­StructuredProxyPullConsumer
	connect_structured_pull_supplier/2
	suspend_connection/1
	resume_connection/1
	disconnect_structured_pull_consumer/1

	CosNotifyChannelAdmin_­StructuredProxyPullSupplier
	connect_structured_pull_consumer/2
	pull_structured_event/1
	try_pull_structured_event/1
	disconnect_structured_pull_supplier/1

	CosNotifyChannelAdmin_­StructuredProxyPushConsumer
	connect_structured_push_supplier/2
	push_structured_event/2
	disconnect_structured_push_consumer/1

	CosNotifyChannelAdmin_­StructuredProxyPushSupplier
	connect_structured_push_consumer/2
	suspend_connection/1
	resume_connection/1
	disconnect_structured_push_supplier/1

