| v

ERLANG

Inets

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.
inets 5.3

21 2017

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

21 2017

1.1 Introduction

1 User's Guide

Thelnets Application providesaset of Internet related services. Currently supported areaHTTP client, aHTTP server
aFTPclientand a TFTP client and server.

1.1 Introduction

1.1.1 Purpose

Inetsisacontainer for Internet clients and servers. Currently, an client and server, aTFPT client and server, and aFTP
client has been incorporated into Inets. The HTTP server and client isHTTP 1.1 compliant as defined in 2616.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP and has a basic
understanding of the HTTP, TFTP and FTP protocols.

1.1.3 The Service Concept

Each client and server ininetsis viewed as service. Services may be configured to be started at application startup or
started dynamically in runtime. If you want to run inets as an distributed application that should handle application
failover and takeover, services should be configured to be started at application startup. When starting the inets
application the inets top supervisor will start a number of subsupervisors and worker processes for handling the
different services provided. When starting services dynamically new children will be added to the supervision tree,
unless the service is started with the stand alone option, in which case the service is linked to the calling process and
all OTP application features such as soft upgrade are lost.

Services that should be configured for startup at application startup time should be put into the erlang node
configuration file on the form:

[{inets, [{services, ListofConfiguredServices}]}].

For details of exactly what to put in the list of configured services see the documentation for the services that should
be configured.

1.2 FTP Client

1.2.1 Introduction

Ftp clients are consider to be rather temporary and are for that reason only started and stopped during runtime and can
not be started at application startup. Due to the design of FTP client AP, letting some functions return intermediate
results, only the process that started the ftp client will be able to access it in order to preserve sane semantics. (This
could be solved by changing the API and using the concept of a controlling process more in line with other OTP
applications, but that is perhaps something for the future.) If the process that started the ftp session dies the ftp client
process will terminate.

The client supports ipv6 as long as the underlying mechanisms a so do so.

Ericsson AB. All Rights Reserved.: inets | 1

1.3 HTTP Client

1.2.2 Using the FTP Client API

Thefollowing is a simple example of an ftp session, where the user guest with password passwor d logs on to the
remote host er | ang. or g, and wherethefileappl . er | istransferred from the remote to the local host. When the
session is opened, the current directory at the remote host is/ hone/ guest , and / hone/ f r ed at the loca host.
Before transferring the file, the current local directory is changed to / hone/ epr oj / exanpl es, and the remote
directory isset to/ hone/ guest / appl / exanpl es.

1> inets:start().

ok

2> {ok, Pid} = inets:start(ftpc, [{host, "erlang.org"}]).
{ ok, <0. 22. 0>}

3> ftp:user(Pid, "guest", "password").
ok

4> ftp: pwd(Pid).

{ok, "/home/guest"}

5> ftp:cd(Pid, "appl/exanples").

ok

6> ftp: | pwd(Pid).

{ok, "/home/fred"}.

7> ftp:lcd(Pid, "/home/eproj/exanples").

ok

8> ftp:recv(Pid, "appl.erl").
ok

9> inets:stop(ftpc, Pid).

ok

1.3 HTTP Client

1.3.1 Introduction

TheHTTP client default profilewill be started when the inets application is started and isthen availableto all processes
on that erlang node. Other profiles may also be started at application startup, or profiles can be started and stopped
dynamically in runtime. Each client profile will spawn anew processto handle each request unlessthereisapossibility
to use a persistent connection with or without pipelining. The client will add a host header and an empty te header if
there are no such headers present in the request.

The clients supports ipv6 as long as the underlying mechanisms also do so.

1.3.2 Configuration
What to put in the erlang node application configuration file in order to start a profile at application startup.

[{inets, [{services, [{httpc, PropertyList}]}]}]

For valid properties see http(3)

1.3.3 Using the HTTP Client API

1 > inets:start().
ok

2 | Ericsson AB. All Rights Reserved.: inets

1.3 HTTP Client

The following calls uses the default client profile. Use the proxy "www-proxy.mycompany.com:8000", but not for

reguests to localhost. Thiswill apply to all subsequent requests

2 > http:set_options([{proxy, {{"wwproxy.nyconpany.coni', 8000},
["local host"]}}]).
ok

An ordinary synchronous request.

3 > {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
http:request (get, {"http://ww.erlang.org", [1}, [1, [])-

With al default values, as above, a get request can also be written like this.

4 > {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
http: request ("http://ww.erlang.org").

An ordinary asynchronous request. Theresult will be sent to the calling process on the form { http, { Regestid, Result} }

5 > {ok, Requestld} =
http: request (get, {"http://wwerlang.org", []}, [], [{sync, false}]).

In this case the calling processis the shell, so we receive the result.

6 > receive {http, {Requestld, Result}} -> ok after 500 -> error end.
ok

Send a request with a specified connection header.

7 > {ok, {{NewVersion, 200, NewReasonPhrase}, NewHeaders, NewBody}} =

http: request (get, {"http://ww.erlang.org", [{"connection", "close"}]},

(1. .

Start aHTTP client profile.

8 > {ok, Pid} = inets:start(httpc, [{profile, foo}]).
{ok, <0.45.0>}

Ericsson AB. All Rights Reserved.: inets | 3

1.4 HTTP server

The new profile has no proxy settings so the connection will be refused

9 > http:request("http://ww.erlang.org", foo).
{error, econnref used}

Stop aHTTP client profile.

10 > inets:stop(httpc, foo).
ok

Alternatively:

10 > inets:stop(httpc, Pid).
ok

1.4 HTTP server

1.4.1 Introduction

The HTTP server, also referred to as httpd, handles HTTP requests as described in RFC 2616 with a few exceptions
such as gateway and proxy functionality. The server supports ipv6 as long as the underlying mechanisms also do so.

The server implements numerous features such as SSL (Secure Sockets Layer), ESI (Erlang Scripting Interface),
CGI (Common Gateway Interface), User Authentication(using Mnesia, dets or plain text database), Common Logfile
Format (with or without disk_log(3) support), URL Aliasing, Action Mappings, Directory Listings and SSI (Server-
Side Includes).

The configuration of the server is provided as an erlang property list, and for backwards compatibility also a
configuration file using apache-style configuration directivesis supported.

As of inets version 5.0 the HTTP server is an easy to start/stop and customize web server that provides the most
basic web server functionality. Depending on your needs there are also other erlang based web servers that may be
of interest such as Yaws, http://yaws.hyber.org, that for instance has its own markup support to generate html, and
supports certain buzzword technol ogies such as SOAP.

Allmost all server functionality has been implemented using an especially crafted server AP, it is described in the
Erlang Web Server API. This API can be used to advantage by all who wantsto enhance the server core functionality,
for example custom logging and authentication.

1.4.2 Configuration
What to put in the erlang node application configuration file in order to start a http server at application startup.

[{inets, [{services, [{httpd, [{proplist_file,
"[/var/tnp/server_root/conf/8888_props.conf"}]},
{httpd, [{proplist_file,
"/ var/tnmp/server_root/conf/8080_props.conf"“}]}1}1}].

4 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

The server is configured using an erlang property list. For the available properties see httpd(3) For backwards
compatibility also apache-like config files are supported.

All possible config properties are as follows

httpd_service() -> {httpd, httpd()}
htt pd() -> [httpd_config()]
httpd_config() -> {file, file()} |
{proplist file, file()}
{debug, debug()} |
{accept _timeout, integer()}
debug() -> disable | [debug_options()]
debug_options() -> {all _functions, nodules()} |
{exported_functions, nodules()} |
{di sabl e, nodul es()}
nmodul es() -> [atom()]

{proplist_file, file()} File containing an erlang property list, followed by a full stop, describing the HTTP server
configuration.

{file, file()} If you use an old apace-like configuration file.
{ debug, debug()} - Can enable trace on al functions or only exported functions on chosen modules.

{’accept_timeout, integer()} setsthe wanted timeout value for the server to set up arequest connection.

1.4.3 Using the HTTP Server API

1 > inets:start().
ok

Start a HTTP server with minimal required configuration. Note that if you specify port 0 an arbitrary available port
will be used and you can use the info function to find out which port number that was picked.

2 > {ok, Pid} = inets:start(httpd, [{port, O},
{server_nane,"httpd_test"}, {server_root,"/tmp"},

{docunent _root,"/tnp/htdocs"}, {bind_address, "local host"}]).
{ok, 0.79.0}

3 > httpd:info(Pid).

[{m nme_types, [{"htm ", "text/htm "}, {"htn, "text/htm "}]},
{server_nane, "httpd_test"},

{bi nd_address, {127,0,0, 1}},

{server _root,"/tm"},

{port, 59408},

{docunent _root,"/tnp/ htdocs"}]

Reload the configuration without restarting the server. Note port and bind_address can not be changed. Clientstrying
to access the server during the reload will get a service temporary unavailable answer.

Ericsson AB. All Rights Reserved.: inets | 5

1.4 HTTP server

4 > httpd:rel oad_config([{port, 59408},
{server_nane,"httpd_test"}, {server_root,"/tnmp/ww test"},
{docurent _root,"/tnp/ ww_t est/htdocs"},

{bi nd_address, "local host"}], non_di sturbing).
ok.

5 > httpd:info(Pid, [server_root, document_root]).
[{server_root,"/tnp/ ww_test"}, {docunent _root,"/tnp/ ww_t est/htdocs"}]

6 > ok = inets:stop(httpd, Pid).

Alternative:
6 > ok = inets:stop(httpd, {{127,0,0,1}, 59408}).

Note that bind_address has to be the ip address reported by the info function and can not be the hosthame that is
allowed when inputting bind_address.

1.4.4 Htaccess - User Configurable Authentication.

If users of the web server needs to manage authentication of web pages that are local to their user and do not have
server administrative privileges. They can use the per-directory runtime configurable user-authentication scheme that
Inets calls htaccess. It works the following way:

e Eachdirectory in the path to the requested asset is searched for an access-file (default .htaccess), that restricts
the web servers rights to respond to arequest. If an access-fileisfound therulesin that fileis applied to the
request.

* Therulesin an access-file applies both to filesin the same directories and in subdirectories. If there exists more
than one access-file in the path to an asset, the rules in the access-file nearest the requested asset will be applied.

e Tochangethe rulesthat restricts the use of an asset. The user only needs to have write access to the directory
where the asset exists.

* All the access-filesin the path to arequested asset is read once per request, this means that the load on the
server will increase when this schemeis used.

» If adirectory islimited both by auth directivesin the HTTP server configuration file and by the htaccessfiles.
The user must be allowed to get access the file by both methods for the request to succeed.

Access Files Directives

In every directory under the Docunent Root or under an Al i as auser can place an access-file. An access-fileisa
plain text file that specify the restrictions that shall be considered before the web server answer to arequest. If there
are more than one access-file in the path to the requested asset, the directivesin the access-filein the directory nearest
the asset will be used.

« DIRECTIVE: "allow"
Syntax: Al | ow from subnet subnet|from all

6 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

Default:f rom al |

Same as the directive allow for the server config file.
DIRECTIVE: "AllowOverRide"

Syntax:Al | owOver Ri de dl | none | Directives
Default:- None -

Al I owOver Ri de Specify which parameters that not access-filesin subdirectories are allowed to alter the value
for. If the parameter is set to none no more access-files will be parsed.

If only one access-file exists setting this parameter to none can lessen the burden on the server since the server
will stop looking for access-files.

DIRECTIVE: "AuthGroupfile"

Syntax: Aut hGr oupFi | e Filename
Default:- None -

AuthGroupFileindicateswhich file that containsthelist of groups. Filename must contain the absol ute path to the
file. The format of the fileis one group per row and every row contains the name of the group and the members
of the group separated by a space, for example:

G oupNane: Menberl Menber2 MenberN

DIRECTIVE: "AuthName"

Syntax: Aut hName auth-domain
Default:- None -

Same as the directive AuthName for the server config file.
DIRECTIVE: "AuthType"

Syntax: Aut hType Basic
Default:Basi ¢

Aut hType Specify which authentication scheme that shall be used. Today only Basic Authenticating using
UUENcoding of the password and user ID isimplemented.

DIRECTIVE: "AuthUserFile"

Syntax: Aut hUser Fi | e Filename
Default:- None -

Aut hUser Fi | e indicate which file that contains the list of users. Filename must contain the absolute path to
the file. The users name and password are not encrypted so do not place the file with usersin a directory that is
accessible via the web server. The format of the file is one user per row and every row contains User Name and
Password separated by a colon, for example:

User Name: Passwor d
User Name: Passwor d

DIRECTIVE: "deny"

Syntax:deny from subnet subnet|from all
Context: Limit

Same as the directive deny for the server config file.

Ericsson AB. All Rights Reserved.: inets | 7

1.4 HTTP server

* DIRECTIVE: "Limit"

Syntax:<Li m t RequestMethods>
Default: - None -

<Li mi t > and </Limit> are used to enclose agroup of directiveswhich appliesonly to requests using the specified
methods. If no request method is specified all request methods are verified against the restrictions.

<Limt POST GET HEAD>
order allow deny
require group groupl
al | ow from 123. 145. 244. 5
</Limt>

* DIRECTIVE: "order"
Syntax:or der allow deny | deny allow
Default: alow deny

or der , definesif the deny or alow control shall be preformed first.

If the order is set to allow deny, then first the users network address is controlled to be in the allow subset. If the
users network addressis not in the allowed subset he will be denied to get the asset. If the network-addressisin
the allowed subset then a second control will be preformed, that the users network addressis not in the subset of
network addresses that shall be denied as specified by the deny parameter.

If the order is set to deny allow then only users from networks specified to be in the allowed subset will succeed
to request assets in the limited area.

* DIRECTIVE: "require"

Syntax:r equi r e group groupl group2...Juser userl user2...
Default:- None -
Context: Limit

See the require directive in the documentation of mod_auth(3) for more information.

1.4.5 Dynamic Web Pages

The Inets HTTP server provides two ways of creating dynamic web pages, each with its own advantages and
disadvantages.

First there are CGlI-scripts that can be written in any programming language. CGl-scripts are standardized and
supported by most web servers. The drawback with CGI-scripts is that they are resource intensive because of their
design. CGlI requires the server to fork anew OS process for each executable it needs to start.

Second there are ESI-functions that provide atight and efficient interface to the execution of Erlang functions, this
interface on the other hand is I nets specific.

The Common Gateway Interface (CGI) Version 1.1, RFC 3875.

The mod_cgi module makes it possible to execute CGI scripts in the server. A file that matches the definition of a
ScriptAlias config directiveistreated asa CGl script. A CGlI script is executed by the server and it's output is returned
to the client.

The CGI Script response comprises a message-header and a message-body, separated by a blank line. The message-
header contains one or more header fields. The body may be empty. Example:

" Cont ent - Type: t ext/ pl ai n\ nAccept - Ranges: none\ n\ nsone very

8 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

plain text"

The server will interpret the cgi-headers and most of them will be transformed into HTTP headers and sent back to
the client together with the body.

Support for CGI-1.1 isimplemented in accordance with the RFC 3875.

Erlang Server Interface (ESI)
The erlang server interface is implemented by the module mod_esi.

The erl scheme is designed to mimic plain CGlI, but without the extra overhead. An URL which calls an Erlang erl
function has the following syntax (regular expression):

http://your.server.org/***/Mdul e[:/]Functi on(?QueryString|/Pat hl nf o)

*** ghove depends on how the ErlScriptAlias config directive has been used

The module (Module) referred to must be found in the code path, and it must define a function (Function) with an
arity of two or three. It is preferable to implement a funtion with arity three as it permits you to send chunks of the
webpage beeing generated to the client during the generation phase instead of first generating the whole web page and
then sending it to the client. The option to implement a function with arity two is only kept for backwardcompatibilty
reasons. See mod_esi(3) for implementation details of the esi callback function.

The eval scheme is straight-forward and does not mimic the behavior of plain CGl. An URL which calls an Erlang
eval function has the following syntax:

http://your.server.org/***/Md: Func(Argl, ..., Ar gN)

*** above depends on how the ErlScriptAlias config directive has been used

The module (Mod) referred to must be found in the code path, and data returned by the function (Func) is passed back
to the client. Data returned from the function must furthermore take the form as specified in the CGI specification.
See mod_esi(3) for implementation details of the esi callback function.

Note:

The eval scheme can seriously threaten the integrity of the Erlang node housing a Web server, for example:

http://your.server.org/eval ?httpd_exanpl e:print(atomto_l|ist(apply(erlang,halt,[])))

which effectively will close down the Erlang node, therefor, use the erl schemeinstead, until this security breach
has been fixed.

Today there are no good way of solving this problem and therefore Eval Scheme may be removed in future
release of Inets.

Ericsson AB. All Rights Reserved.: inets | 9

1.4 HTTP server

1.4.6 Logging

There are three types of logs supported. Transfer logs, security logs and error logs. The de-facto standard Common
Logfile Format isused for thetransfer and security logging. There are numerous statistics programs avail ableto analyze
Common Logfile Format. The Common L ogfile Format looks as follows:

remotehost rfc931 authuser [date] "request” status bytes

remotehost

Remote hostname
rfco31

The client's remote username (RFC 931).
authuser

The username with which the user authenticated himself.
[date]

Date and time of the request (RFC 1123).
"request"

The request line exactly as it came from the client (RFC 1945).
status

The HTTP status code returned to the client (RFC 1945).
bytes

The content-length of the document transferred.

Internal server errors are recorde in the error log file. The format of this file is a more ad hoc format than the logs
using Common L ogfile Format, but conforms to the following syntax:

[date] accessto path failed for remotehost, reason: reason

1.4.7 Server Side Includes
Server Side Includes enables the server to run code embedded in HTML pages to generate the response to the client.

Note:

Having the server parse HTML pages is a double edged sword! It can be costly for a heavily loaded server to
perform parsing of HTML pages while sending them. Furthermore, it can be considered a security risk to have
average users executing commands in the name of the Erlang node user. Carefully consider these items before
activating server-side includes.

SERVER-SIDE INCLUDES (SSI) SETUP

The server must be told which filename extensions to be used for the parsed files. These files, while very similar to
HTML, are not HTML and are thus not treated the same. Internally, the server uses the magic MIME typet ext /
X- server - par sed- ht M toidentify parsed documents. It will then perform aformat conversion to change these
filesinto HTML for the client. Update the mi e. t ypes file, as described in the Mime Type Settings, to tell the
server which extension to use for parsed files, for example:

text/x-server-parsed-htm shtm shtm

This makes files ending with . sht ml and . sht minto parsed files. Alternatively, if the performance hit is not a
problem, all HTML pages can be marked as parsed:

10 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

text/x-server-parsed-htm htnm htm

Server-Side Includes (SSI) Format

All server-side include directives to the server are formatted as SGML comments within the HTML page. Thisisin
case the document should ever find itself in the client's hands unparsed. Each directive has the following format:

<l--#commnd tagl="val uel" tag2="val ue2" -->

Each command takes different arguments, most only accept one tag at atime. Here is a breakdown of the commands
and their associated tags:

The config directive controls various aspects of the file parsing. There are two valid tags:
errmsg

controls the message sent back to the client if an error occurred while parsing the document. All errors are logged
in the server's error log.

sizefm

determines the format used to display the size of afile. Valid choices are byt es or abbr ev. byt es for a
formatted byte count or abbr ev for an abbreviated version displaying the number of kilobytes.

Theinclude directory will insert the text of a document into the parsed document. This command accepts two tags:

vi rtual
givesavirtual path to a document on the server. Only normal files and other parsed documents can be accessed
in thisway.

file

gives a pathname relative to the current directory. . . / cannot be used in this pathname, nor can absolute paths.
As above, you can send other parsed documents, but you cannot send CGI scripts.

The echo directive printsthe value of one of the include variables (defined below). The only valid tag to this command
isvar , whose value is the name of the variable you wish to echo.

The fsize directive prints the size of the specified file. Valid tags are the same as with thei ncl ude command. The
resulting format of this command is subject to the si zef nt parameter to the conf i g command.

The lastmod directive prints the last modification date of the specified file. Valid tags are the same as with the
i ncl ude command.

The exec directive executes a given shell command or CGI script. Valid tags are:
cnd

executes the given string using / bi n/ sh. All of the variables defined below are defined, and can be used in
the command.

cgi

executesthe given virtual path to a CGlI script and includesits output. The server does not perform error checking
on the script output.

Ericsson AB. All Rights Reserved.: inets | 11

1.4 HTTP server

Server-Side Includes (SSI) Environment Variables

A number of variables are made available to parsed documents. In addition to the CGI variable set, the following
variables are made available:

DOCUMENT _NAMVE

The current filename.
DOCUMENT_URI

The virtual path to this document (such as/ docs/ tut ori al s/ foo. shtnl).
QUERY_STRI NG_UNESCAPED

The unescaped version of any search query the client sent, with all shell-special characters escaped with \ .
DATE_LOCAL

The current date, local time zone.
DATE_GMI

Same as DATE_LOCAL but in Greenwich mean time.
LAST_MODI FI ED

The last modification date of the current document.

1.4.8 The Erlang Web Server API

The process of handling aHTTP request involves several steps such as:

* Seting up connections, sending and receiving data.

* URI tofilename trandation

* Authenication/access checks.

* Retriving/generating the response.

e Logging

To provide customization and extensibility of the HT TP serversrequest handling most of these stepsare handled by one
or more modules that may be replaced or removed at runtime, and of course new ones can be added. For each request
all modules will be traversed in the order specified by the modules directive in the server configuration file. Some
parts mainly the communication related steps are considered server core functionality and are not implemented using

the Erlang Web Server API. A description of functionality implemented by the Erlang Webserver API is described
in the section Inets Webserver Modules.

A module can use data generated by previous modules in the Erlang Webserver APl module sequence or generate
data to be used by consecutive Erlang Web Server API modules. Thisis made possible due to an internal list of key-
value tuples, also referred to as interaction data.

Note:

I nteraction dataenforces modul e dependenciesand should be avoided if possible. Thismeansthe order of modules
in the Modules property is significant.

API Description

Each module implements server functionality using the Erlang Web Server API should implement the following call
back functions:

12 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

e do/1 (mandatory) - the function called when a request should be handled.

 Jload/2
e store/2
e remove/l

The latter functions are needed only when new config directives are to be introduced. For details see httpd(3)

1.4.9 Inets Web Server Modules

Theconventionisthat all modul esimplementing somewebserver functionality hasthenamemod_*. When configuring
the web server an appropriate selection of these modules should be present in the Module directive. Please note that
there are some interaction dependencies to take into account so the order of the modules can not be totally random.
mod_action - Filetype/Method-Based Script Execution.
Runs CGlI scripts whenever afile of acertain type or HTTP method (See RFC 1945) is requested.
Usesthe following Erlang Web Server API interaction data:
e red_name- from mod_alias
Exports the following Erlang Web Server API interaction data, if possible:
{new_request uri, RequestURl}
An alternative Request URI has been generated.
mod_alias - URL Aliasing

This module makes it possible to map different parts of the host file system into the document tree e.i. creates aliases
and redirections.

Exports the following Erlang Web Server API interaction data, if possible:
{real _nane, Pat hDat a}
PathDatais the argument used for API function mod_alias:path/3.
mod_auth - User Authentication
This module provides for basic user authentication using textua files, dets databases as well as mnesia databases.
Uses the following Erlang Web Server API interaction data:
* rea_name- frommod_dlias
Exports the following Erlang Web Server API interaction data:

{renote_user, User}
The user name with which the user has authenticated himself.

If Mnesiais used as storage method, Mnesia must be started prio to the HTTP server. The first time Mnesiais started
the schema and the tables must be created before Mnesiaiis started. A naive example of a module with two functions
that creates and start mnesiaiis provided here. The function shall be used the first time. first_start/O creates the schema
and the tables. The second function start/O shall be used in consecutive startups. start/O Starts Mnesia and wait for the
tablesto beinitiated. This function must only be used when the schema and the tables already is created.

-nmodul e(mesi a_test).
-export([start/0,| oad_data/0]).
-include("nmod_auth. hrl").

first_start() ->
mmesi a: creat e_schema([node()]),

Ericsson AB. All Rights Reserved.: inets | 13

1.4 HTTP server

mesi a: start (),
mesi a: create_t abl e(httpd_user,

[{type, bag},
{di sc_copies, [node()]},
{attributes, record_info(fields,
httpd_user)}]),
mmesi a: creat e_t abl e(htt pd_group,
[{type, bag},
{di sc_copies, [node()]},
{attributes, record_info(fields,

httpd_group)}]),
mesi a: wai t _for_tables([httpd_user, httpd_group], 60000).

start() ->
mesi a: start (),
mesi a: wai t _for_tables([httpd_user, httpd_group], 60000).

To create the M nesiatableswe use two records defined in mod_auth.hrl so the file must be included. Thefirst function
first_start/O creates a schema that specify on which nodes the database shall reside. Then it starts Mnesia and creates
the tables. The first argument is the name of the tables, the second argument is alist of options how the table will be
created, see Mnesia documentation for more information. Since the current implementation of the mod_auth_mnesia
saves one row for each user the type must be bag. When the schema and the tables is created the second function
start/0 shall be used to start Mensia. It starts Mnesia and wait for the tables to be loaded. Mnesia use the directory
specified asmnesia_dir at startup if specified, otherwise Mnesia use the current directory. For security reasons, make
sure that the Mnesia tables are stored outside the document tree of the HTTP server. If it is placed in the directory
which it protects, clientswill be able to download the tables. Only the dets and mnesia storage methods allow writing
of dynamic user datato disk. plainisaread only method.

mod_cgi - CGlI Scripts

This module handles invoking of CGI scripts

mod_dir - Directories

This module generates an HTML directory listing (Apache-style) if a client sends a reguest for a directory instead of
afile. This module needs to be removed from the Modules config directive if directory listings is unwanted.

Uses the following Erlang Web Server API interaction data:
e rea_name- frommod_alias
Exports the following Erlang Web Server API interaction data:
{m nme_type, M neType}
The file suffix of theincoming URL mapped intoaM neType.
mod_disk_log - Logging Using disk_log.
Standard logging using the "Common Logdfile Format" and disk_log(3).
Uses the following Erlang Web Server API interaction data:
e remote user - from mod_auth

mod_esi - Erlang Server Interface

This module implements the Erlang Server Interface (ESI) that provides atight and efficient interface to the execution
of Erlang functions.

Uses the following Erlang Web Server API interaction data:
e remote user - from mod_auth

14 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

Exports the following Erlang Web Server API interaction data:
{m me_type, M neType}

Thefile suffix of theincoming URL mapped into aM neType
mod_get - Regular GET Requests

This module is responsible for handling GET requests to regular files. GET requests for parts of filesis handled by
mod_range.

Usesthe following Erlang Web Server API interaction data:
* rea_name- frommod_dlias

mod_head - Regular HEAD Requests

Thismoduleisresponsiblefor handling HEAD requeststo regul ar files. HEAD requestsfor dynamic content ishandled
by each module responsible for dynamic content.

Uses the following Erlang Web Server API interaction data:
e rea_name- from mod_alias

mod_htaccess - User Configurable Access

This module provides per-directory user configurable access control.
Uses the following Erlang Web Server API interaction data:

e red_name- frommod_alias

Exports the following Erlang Web Server API interaction data:

{renote_user_ nane, User}
The user name with which the user has authenticated himself.

mod_include - SSI

This module makes it possible to expand "macros’ embedded in HTML pages before they are delivered to the client,
that is Server-Side Includes (SSI).

Uses the following Erlang Webserver APl interaction data:

e rea_name- frommod_alias
e remote user - from mod_auth

Exports the following Erlang Webserver API interaction data:
{m me_type, M neType}
Thefile suffix of the incoming URL mapped into aM nmeType asdefined in the Mime Type Settings section.
mod_log - Logging Using Text Files.
Standard logging using the "Common L ogfile Format" and text files.
Usesthe following Erlang Webserver API interaction data:

e remote user - from mod_auth

mod_range - Requests with Range Headers

This module response to requests for one or many ranges of afile. Thisis especially useful when downloading large
files, since a broken download may be resumed.

Note that request for multiple parts of a document will report a size of zero to the log file.
Usesthe following Erlang Webserver API interaction data:

Ericsson AB. All Rights Reserved.: inets | 15

1.4 HTTP server

* rea_name-frommod dlias

mod_response_control - Requests with If* Headers

This module controlsthat the conditions in the requestsis fulfilled. For example arequest may specify that the answer
only is of interest if the content is unchanged since last retrieval. Or if the content is changed the range-request shall
be converted to arequest for the whole file instead.

If a client sends more then one of the header fields that restricts the servers right to respond, the standard does not
specify how this shall be handled. httpd will control each field in the following order and if one of the fields not match
the current state the request will be rejected with a proper response.

1.If-modified

2.1f-Unmodified

3.If-Match

4.1f-Nomatch

Usesthe following Erlang Webserver API interaction data:
* rea_name- frommod_dlias
Exports the following Erlang Webserver API interaction data:

{if_range, send_file}
The conditions for the range request was not fulfilled. The response must not be treated as a range request,
instead it must be treated as a ordinary get request.

mod_security - Security Filter

This module serves as afilter for authenticated requests handled in mod_auth. It provides possibility to restrict users
from access for a specified amount of time if they fail to authenticate several times. It logs failed authentication as
well as blocking of users, and it also calls a configurable call-back module when the events occur.

Thereisaso an API to manually block, unblock and list blocked users or users, who have been authenticated within
a configurable amount of time.

mod_trace - TRACE Request

mod_trace isresponsible for handling of TRACE requests. Trace is anew request method in HTTP/1.1. The intended
use of trace requests is for testing. The body of the trace response is the request message that the responding Web
server or proxy received.

16 | Ericsson AB. All Rights Reserved.: inets

1.4 HTTP server

2 Reference Manual

Inetsisacontainer for Internet clients and servers. Currently aFTP client, aHTTP client and server, and atftp client
and server has been incorporated in Inets.

Ericsson AB. All Rights Reserved.: inets | 17

inets

inets

Erlang module

This module provides the most basic API to the clients and servers, that are part of the Inets application, such as start
and stop.

COMMON DATA TYPES

Type definitions that are used more than once in this modul e:
service() = ftpc | tfptd | httpc | httpd
property() = atom()

Exports

services() -> [{Service, Pid}]

Types:
Service = service()
Pid = pid()

Returnsalist of currently running services.

Note:

Services started as st and_al one will not be listed.

services_info() -> [{Service, Pid, Info}]

Types:
Service = service()
Pid = pid()

Info = [{Option, Value}]
Option = property()
Value=term()

Returnsalist of currently running serviceswhere each serviceisdescribed by a[{ Option, Value}] list. Theinformation
given in the list is specific for each service and it is probable that each service will have its own info function that
gives you even more details about the service.

service_nanes() -> [Service]
Types.

Service = service()
Returns alist of available service names.

start() ->

18 | Ericsson AB. All Rights Reserved.: inets

inets

start (Type) -> ok | {error, Reason}
Types:
Type = permanent | transient | temporary
Starts the Inets application. Default type is temporary. See also application(3)

stop() -> ok
Stops the inets application. See also application(3)

start(Service, ServiceConfig) -> {ok, Pid} | {error, Reason}
start(Service, ServiceConfig, How) -> {ok, Pid} | {error, Reason}

Types:
Service = service()
ServiceConfig = [{Option, Value}]
Option = property()
Value=term()
How = inets| stand_alone - default isinets

Dynamically starts an inets service after the inets application has been started.

Note:

Dynamically started services will not be handled by application takeover and failover behavior when inets is
run as a distributed application. Nor will they be automatically restarted when the inets application is restarted,
but as long as the inets application is up and running they will be supervised and may be soft code upgraded.
Services started asst and_al one, e.i. the serviceisnot started as part of theinets application, will loseall OTP
application benefits such as soft upgrade. The "stand_alone-service" will be linked to the process that started it.
In most cases some of the supervision functionality will till be in place and in some sense the calling process
has now become the top supervisor.

stop(Service, Reference) -> ok | {error, Reason}
Types:

Service = service() | stand_alone

Reference = pid() | term() - service specified reference

Reason = term()

Stops a started service of the inets application or takes down a "stand alone-service" gracefully. When the
st and_al one option isused in start, only the pid is avalid argument to stop.

SEE ALSO
ftp(3), http(3), httpd(3), thtp(3)

Ericsson AB. All Rights Reserved.: inets | 19

ftp

ftp

Erlang module

Thef t p module implements aclient for file transfer according to a subset of the File Transfer Protocol (see 959).

Starting from inets version 4.4.1 the ftp client will always try to use passive ftp mode and only resort to active ftp
mode if thisfails. Thereis a start option mode where this default behavior may be changed.

There are two ways to start an ftp client. One is using the Inets service framework and the other is to start it directy
as a standal one process using the open function.

For asimple example of an ftp session see Inets User's Guide.

In addition to the ordinary functions for receiving and sending files (seer ecv/ 2,r ecv/ 3, send/ 2 and send/ 3)
there are functions for receiving remote files as binaries (seer ecv_bi n/ 2) and for sending binaries to to be stored
asremotefiles (seesend_bi n/ 3).

There is also a set of functions for sending and receiving contiguous parts of a file to be stored in a remote
file (for send see send_chunk_start/ 2, send_chunk/ 2 and send_chunk_end/ 1 and for receive see
recv_chunk_start/2andrecv_chunk/).

The particular return values of the functions below depend very much on the implementation of the FTP server at
the remote host. In particular the resultsfrom | s and nl i st varies. Often real errors are not reported as errors by
I s, even if for instance a file or directory does not exist. nl i st is usually more strict, but some implementations
have the peculiar behaviour of responding with an error, if the request is a listing of the contents of directory which
exists but is empty.

FTP CLIENT SERVICE START/STOP

The FTP client can be started and stopped dynamically in runtime by calling the Inets application API
inets:start(ftpc, ServiceConfig),orinets:start(ftpc, ServiceConfig, How), and
i nets:stop(ftpc, Pid).Seeinets(3)for moreinfo.

Below follows a description of the available configuration options.

{host, Host}
Host=string() | ip_address()
{port, Port}
Port=integer() > 0
Default is 21.

{mode, Mode}
Mode=active | passive
>
Default ispassi ve.
{verbose, Verbose}
Verbose = bool ean()
This determinesif the FTP communication should be verbose or not.
Defaultisf al se.

20 | Ericsson AB. All Rights Reserved.: inets

ftp

{ debug, Debug}
Debug=trace | debug | disable
Debugging using the dbg toolkit.
Defaultisdi sabl e.
{ipfamily, IpFamily}
IpFamily =i net | inet6 | inet6fb4
Withi net 6f b4 the client behaves as before (it tries to use |Pv6 and only if that does not work, it uses IPv4).
Defaultisi net (IPv4).
{timeout, Timeout}
Timeout=i nteger() >= 0
Connection timeout.
Default is 60000 (milliseconds).
{progress, Progress}
Progress=i gnore | {CBMbdul e, CBFunction, InitProgress}
CBModule=at on{) , CBFunction = at on{)
InitProgress=t er m()
Default isi gnor e.

The progress option is intended to be used by applications that want to create some type of progress report such as a
progress bar inaGUI. The default value for the progress option isignore e.i. the option is not used. When the progress
option is specified the following will happen when ftp:send/[3,4] or ftp:recv/[3,4] are called.

» Beforeafileistransfered the following call will be made to indicate the start of the file transfer and how big the
fileis. Thereturn value of the callback function should be anew value for the UserProgressTerm that will bu used
asinput next time the callback function is called.

CBModul e: CBFunction(lnitProgress, File, {file_size, FileSize})

* Every time achunk of bytesis transfered the following call will be made:

CBModul e: CBFunction(UserProgressTerm File, {transfer_size, TransferSize})

« Attheend of thefilethe following call will be made to indicate the end of the transfer.
CBModul e: CBFunction(UserProgressTerm File, {transfer_size, 0})

The callback function should be defined as

CBModul e: CBFuncti on(User ProgressTerm File, Size) -> UserProgressTerm
CBModul e = CBFunction = atom()

User ProgressTerm = term)

File = string()

Size = {transfer_size, integer()} | {file_size, integer()} | {file_size,
unknown}

Alasfor remotefilesit is not possible for ftp to determine the file size in a platform independent way. In this case the
sizewill be unknown and it isleft to the application to find out the size.

Ericsson AB. All Rights Reserved.: inets | 21

ftp

Note:

The callback is made by a middieman process, hence the file transfer will not be affected by the code in the
progress callback function. If the callback should crash this will be detected by the ftp connection process that
will print an info-report and then go one asiif the progress option was set to ignore.

Thefile transfer typeis set to the default of the FTP server when the session is opened. Thisis usually ASCCI-mode.

The current local working directory (cf. | pwd/ 1) is set to the value reported by fi | e: get _cwd/ 1. the wanted
local directory.

The return value Pi d is used as a reference to the newly created ftp client in all other functions, and they should be
called by the process that created the connection. The ftp client process monitors the process that created it and will
terminate if that process terminates.

COMMON DATA TYPES

Here follows type definitions that are used by more than one function in the FTP client API.
pid() - identifier of an ftp connection.

string() = 1list of ASCII| characters.

shortage_reason() = etnospc | epnospc

restriction_reason() = epath | efnanena | elogin | enotbinary - note not all
restrictions nay always relevant to all functions

comon_reason() = econn | eclosed | term() - sone kind of explanation of what
went wrong.

Exports

account (Pid, Account) -> ok | {error, Reason}
Types.

Pid = pid()

Account = string()

Reason = eacct | common_reason()

If an account is needed for an operation set the account with this operation.

append(Pid, LocalFile) ->
append(Pid, LocalFile, RenoteFile) -> ok | {error, Reason}
Types.
Pid = pid()
L ocalFile = RemoteFile = string()
Reason = epath | elogin | ethospc | epnospc | efhamena | common_reason
Transfers the file Local Fi | e to the remote server. If Renpt eFi | e is specified, the name of the remote file that

the file will be appended to is set to Renot eFi | e; otherwise the name is set to Local Fi | e If the file does not
exists the file will be created.

append_bin(Pid, Bin, RenoteFile) -> ok | {error, Reason}
Types:

22 | Ericsson AB. All Rights Reserved.: inets

ftp

Pid = pid()

Bin = binary()()

RemoteFile = string()

Reason = restriction_reason()| shortage reason() | common_reason()

Transfers the binary Bi n to the remote server and append it to the file Renot eFi | e. If the file does not exists it
will be created.

append_chunk(Pid, Bin) -> ok | {error, Reason}

Types:
Pid = pid()
Bin = binary()

Reason = echunk | restriction_reason() | common_reason()

Transfer the chunk Bi n to the remote server, which append it into the file specified in the cal to
append_chunk_start/2.

Notethat for someerrors, e.g. file systemfull, itisnecessary toto call append_chunk _end to get the proper reason.

append_chunk_start(Pid, File) -> ok | {error, Reason}

Types:
Pid = pid()
File = string()

Reason = restriction_reason() | common_reason()

Start the transfer of chunks for appending to the file Fi | e at the remote server. If the file does not exists it will be
created.

append_chunk_end(Pid) -> ok | {error, Reason}
Types:

Pid = pid()

Reason = echunk | restriction_reason() | shortage reason()

Stops transfer of chunks for appending to the remote server. The file at the remote server, specified in the call to
append_chunk_start/ 2 isclosed by the server.

cd(Pid, Dir) -> ok | {error, Reason}

Types:
Pid = pid()
Dir = string()

Reason = restriction_reason() | common_reason()

Changes the working directory at the remote serverto Di r .

close(Pid) -> ok
Types:
Pid = pid()
Ends an ftp session, created using the open function.

Ericsson AB. All Rights Reserved.: inets | 23

ftp

delete(Pid, File) -> ok | {error, Reason}

Types.
Pid = pid()
File=string()

Reason = restriction_reason() | common_reason()

DeletesthefileFi | e at the remote server.

formaterror(Tag) -> string()
Types.
Tag={error, atom()} | atom()

Given an error return value { er r or , At onReason}, thisfunction returns a readable string describing the error.

lcd(Pid, Dir) -> ok | {error, Reason}

Types:
Pid = pid()
Dir = string()

Reason = restriction_reason()
Changes the working directory to Di r for the local client.

| pwd(Pid) -> {ok, Dir}
Types:
Pid = pid()
Returns the current working directory at the local client.

I s(Pid) ->
| s(Pid, Pathnane) -> {ok, Listing} | {error, Reason}
Types:

Pid = pid()

Pathname = string()

Listing = string()

Reason = restriction_reason() | common_reason()
Returns alist of filesin long format.
Pat hname can be adirectory, agroup of files or even afile. The Pat hnane string can contain wildcard(s).
| s/ 1 impliesthe user's current remote directory.

The format of Li st i ng isoperating system dependent (on UNIX it istypicaly produced from the output of thel s
- | shell command).

nkdir(Pid, Dir) -> ok | {error, Reason}

Types:
Pid = pid()
Dir =string()

Reason = restriction_reason() | common_reason()

24 | Ericsson AB. All Rights Reserved.: inets

ftp

Createsthe directory Di r at the remote server.

nlist(Pid) ->
nlist(Pid, Pathnanme) -> {ok, Listing} | {error, Reason}
Types:
Pid = pid()
Pathname = string()
Listing = string()
Reason = restriction_reason() | common_reason()
Returns alist of filesin short format.
Pat hname can be adirectory, agroup of files or even afile. The Pat hnan®e string can contain wildcard(s).
nl i st/ 1 impliesthe user's current remote directory.

Theformat of Li st i ng isastream of file names, where each nameis separated by <CRLF> or <NL>. Contrary to the
I s function, thepurposeof nl i st istomakeit possiblefor aprogram to automatically processfile nameinformation.

open(Host) -> {ok, Pid} | {error, Reason}
open(Host, Opts) -> {ok, Pid} | {error, Reason}

Types:
Host = string() | ip_address()
Opts = options()
options() = [option()]
option() = start_option() | open_option()
start_option() = {verbose, verbose()} | {debug, debug()}
verbose() = boolean() (defaultsto false)
debug() = disable | debug | trace (defaultsto disable)
open_option() = {ipfamily, ipfamily()} | {port, port()} | {mode, mode()} | {timeout, timeout()} | {progress,
progress()}
ipfamily() = inet | inet6 | inet6fb4 (defaultsto inet)
port() = integer() > O (defaultsto 21)
mode() = active | passive (defaultsto passive)
timeout() = integer () >= 0 (defaults to 60000 milliseconds)
pogress() = ignore | {module(), function(), initial_data()} (defaultsto ignore)
module() = atom()
function() = atom()
initial_data() = term()
Reason = ehost | term()

Thisfunction is used to start a standalone ftp client process (without the inets service framework) and open a session
with the FTP server at Host .

A session opened in thisway, is closed using the close function.
pwd(Pid) -> {ok, Dir} | {error, Reason}

Types:
Pid = pid()

Ericsson AB. All Rights Reserved.: inets | 25

ftp

Reason = restriction_reason() | common_reason()

Returns the current working directory at the remote server.

pwd(Pid) -> {ok, Dir} | {error, Reason}
Types:

Pid = pid()

Reason = restriction_reason() | common_reason()
Returns the current working directory at the remote server.

recv(Pid, RenoteFile) ->
recv(Pid, RenoteFile, LocalFile) -> ok | {error, Reason}

Types.

Pid = pid()

RemoteFile = LocalFile = string()

Reason = restriction_reason() | common_reason() | file_write_error_reason()

file_write_error_reason() = seefile:write/2
Transfer the file Renot eFi | e from the remote server to the the file system of the local client. If Local Fi l e is
specified, the local filewill be Local Fi | e; otherwiseit will be Renot eFi | e.

If thefilewritefails (e.g. enospc), thenthecommandisabortedand{ error, file_wite_error_reason()}
isreturned. Thefileis however not removed.

recv_bin(Pid, RemoteFile) -> {ok, Bin} | {error, Reason}

Types:
Pid = pid()
Bin = binary()

RemoteFile = string()
Reason = restriction_reason() | common_reason()

Transfersthe file Renot eFi | e from the remote server and receivesit asabinary.

recv_chunk_start(Pid, RenoteFile) -> ok | {error, Reason}
Types.

Pid = pid()

RemoteFile = string()

Reason = restriction_reason() | common_reason()

Start transfer of the file Renot eFi | e from the remote server.

recv_chunk(Pid) -> ok | {ok, Bin} | {error, Reason}

Types.
Pid = pid()
Bin = binary()

Reason = restriction_reason() | common_reason()

Receive a chunk of the remote file (Renot eFi | e of recv_chunk_st art). The return values has the following
meaning:

26 | Ericsson AB. All Rights Reserved.: inets

ftp

* ok thetransfer is complete.
« {ok, Bin} justanother chunk of thefile.
e {error, Reason} transfer failed.

renanme(Pid, dd, New) -> ok | {error, Reason}
Types:

Pid = pid()

CurrFile= NewFile = string()

Reason = restriction_reason() | common_reason()

Renames A d to New at the remote server.

rmdir(Pid, Dir) -> ok | {error, Reason}

Types:
Pid = pid()
Dir = string()

Reason = restriction_reason() | common_reason()

Removes directory Di r at the remote server.

send(Pid, LocalFile) ->
send(Pid, LocalFile, RemroteFile) -> ok | {error, Reason}

Types:
Pid = pid()
L ocalFile = RemoteFile = string()
Reason = restriction_reason() | common_reason() | shortage reason()

Transfersthe file Local Fi | e to the remote server. If Renot eFi | e is specified, the name of the remote file is set
to Renot eFi | e; otherwise the nameissetto Local Fi | e.

send_bin(Pid, Bin, RenoteFile) -> ok | {error, Reason}
Types:

Pid = pid()

Bin = binary()()

RemoteFile = string()

Reason = restriction_reason() | common_reason() | shortage reason()

Transfersthe binary Bi n into the file Renot eFi | e at the remote server.

send_chunk(Pid, Bin) -> ok | {error, Reason}

Types.
Pid = pid()
Bin = binary()

Reason = echunk | restriction_reason() | common_reason()

Transfer the chunk Bi n to the remote server, which writes it into the file specified in the cal to
send_chunk_start/ 2.

Note that for some errors, e.g. file system full, it is necessary to to call send_chunk_end to get the proper reason.

Ericsson AB. All Rights Reserved.: inets | 27

ftp

send_chunk_start(Pid, File) -> ok | {error, Reason}

Types.
Pid = pid()
File=string()

Reason = restriction_reason() | common_reason()

Start transfer of chunksinto thefile Fi | e at the remote server.

send_chunk_end(Pid) -> ok | {error, Reason}
Types.
Pid = pid()
Reason = restriction_reason() | common_reason() | shortage reason()

Stops transfer of chunks to the remote server. The file at the remote server, specified in the cal to
send_chunk_st art/ 2 isclosed by the server.

type(Pid, Type) -> ok | {error, Reason}
Types:

Pid = pid()

Type = astii | binary

Reason = etype | restriction_reason() | common_reason()

Setsthefiletransfer typetoasci i or bi nary. When an ftp session is opened, the default transfer type of the server
isused, most often asci i , which isthe default according to RFC 959.

user(Pid, User, Password) -> ok | {error, Reason}
Types.

Pid = pid()

User = Password = string()

Reason = euser | common_reason()

Performslogin of User with Passwor d.

user(Pid, User, Password, Account) -> ok | {error, Reason}
Types.

Pid = pid()

User = Password = string()

Reason = euser | common_reason()

Performslogin of User with Passwor d to the account specified by Account .

quot e(Pid, Conmmand) -> [FTPLi ne]
Types.

Pid = pid()

Command = string()

FTPLine=string() - Notethe telnet end of line characters, from the ftp protocol definition, CRLF e.g. "\
\r\\n" has been removed.

28 | Ericsson AB. All Rights Reserved.: inets

ftp

Sends an arbitrary FTP command and returns verbatimly alist of the lines sent back by the FTP server. Thisfunctions
isintended to give an application accesses to FTP commands that are server specific or that may not be provided by
this FTP client.

Note:

FTP commands that require a data connection can not be successfully issued with this function.

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by f or mat er r or / 1 are asfollows:
echunk
Synchronisation error during chunk sending.

A call hasbeenmadetosend_chunk/ 2 orsend_chunk_end/ 1, beforeacaltosend _chunk_start/ 2;
or a call has been made to another transfer function during chunk sending, i.e. before a call to
send_chunk_end/ 1.

ecl osed
The session has been closed.
econn
Connection to remote server prematurely closed.
ehost
Host not found, FTP server not found, or connection rejected by FTP server.
el ogin
User not logged in.
enot bi nary
Termisnot abinary.
epat h
No such file or directory, or directory already exists, or permission denied.
etype
No such type.
euser
User name or password not valid.
et nospc
Insufficient storage space in system [452].
epnospc
Exceeded storage allocation (for current directory or dataset) [552].
ef nanena
File name not allowed [553].

Ericsson AB. All Rights Reserved.: inets | 29

ftp

SEE ALSO
file, filename, J. Postel and J. Reynolds: File Transfer Protocol (RFC 959).

30 | Ericsson AB. All Rights Reserved.: inets

tftp

tftp

Erlang module

Thisis a complete implementation of the following IETF standards:

* RFC 1350, The TFTP Protocol (revision 2).

e RFC 2347, TFTP Option Extension.

e RFC 2348, TFTP Blocksize Option.

* RFC 2349, TFTP Timeout Interval and Transfer Size Options.

The only feature that not isimplemented in thisrelease is the "netascii” transfer mode.

The start/1 function starts a daemon process which listens for UDP packets on a port. When it receives a request for
read or write it spawns atemporary server process which handles the actua transfer of thefile.

Ontheclient sidetheread file/3andwrite_file/3 functions spawnsatemporary client processwhich establishes contact
with a TFTP daemon and performs the actual transfer of the file.

tftp uses a calback module to handle the actual file transfer. Two such callback modules are provided,
tftp_binaryandtftp fil e.Seeread file/3 and write file/3 for more information about these. The user can
also implement own callback modules, see CALLBACK FUNCTIONSbelow. A callback module provided by the user
isregistered using the cal | back option, see DATA TYPES below.

TFTP SERVER SERVICE START/STOP

A TFTP server can be configured to start statically when starting the Inets application. Alternatively it can be
started dynamically (when Inets aready is started) by calling the Inets application APl i net s: start (tftpd,
ServiceConfig), orinets:start(tftpd, ServiceConfig, How), seeinets(3) for details. The
Ser vi ceConfi g for TFTPisdescribed below in the COMMON DATA TYPES section.

The TFTP server can be stopped usingi net s: st op(tftpd, Pid), seeinets(3) for details.

The TPFT client is of such atemporary nature that it is not handled as a service in the Inets service framework.

COMMON DATA TYPES

Servi ceConfig = Options

Options = [option()]
option() -- see bel ow

Most of the options are common for both the client and the server side, but some of them differs alittle. Here are
the available options:

{debug, Level}
Level = none | error | warning | brief | normal | verbose | all
Controlsthe level of debug printouts. The default isnone.
{host, Host}
Host = host nane() seeinet(3)
The name or | P address of the host where the TFTP daemon resides. This option is only used by the client.

Ericsson AB. All Rights Reserved.: inets | 31

tftp

{port, Port}
Port = int()

The TFTP port where the daemon listens. It defaults to the standardized number 69. On the server side it may
sometimes make senseto set it to 0, which means that the daemon just will pick afree port (which oneis returned
by thei nf o/ 1 function).

If a socket has somehow already has been connected, the {udp, [{fd, integer()}]} option can be used to pass
the open file descriptor to gen_udp. This can be automated a bit by using a command line argument stating the
prebound file descriptor number. For example, if the Port is 69 and the file descriptor 22 has been opened by
setuid_socket wrap. Then the command line argument "-tftpd 69 22" will trigger the prebound file descriptor
22 to be used instead of opening port 69. The UDP option {udp, [{fd, 22}]} automatically be added. See
init:get_argument/ about command line arguments and gen_udp:open/2 about UDP options.

{port_policy, Policy}

Policy = random | Port | {range, M nPort, MaxPort}
Port = MnPort = MaxPort = int()

Policy for the selection of the temporary port which is used by the server/client during the file transfer. It defaults
to r andomwhich is the standardized policy. With this policy a randomized free port used. A single port or a
range of ports can be useful if the protocol should pass through afirewall.

{udp, Options}

Options = [Opt] seegen udp:open/2
{use_tsize, Bool}

Bool = bool ()

Flag for automated usage of thet si ze option. With this set to true, thewr i t e_f i | e/ 3 client will determine
thefilesize and send it to the server asthe standardized t si ze option. Aread_fi | e/ 3 client will just acquire
filesize from the server by sending azerot si ze.

{max_tsize, MaxTsi ze}
MaxTsize = int() | infinity
Threshold for the maximal filesize in bytes. The transfer will be aborted if the limit is exceeded. It defaults to
infinity.
{max_conn, MaxConn}
MaxConn = int() | infinity

Threshold for the maximal number of active connections. The daemon will reject the setup of new connections
if the limit is exceeded. It defaultstoi nfi nity.

{TftpKey, TftpVal}

Tf t pKey string()
Tf t pVal string()

The name and value of a TFTP option.

{reject, Feature}

Feature = Mbde | TftpKey
Mode = read | wite
TftpKey = string()

Control which features that should be rejected. This is mostly useful for the server as it may restrict usage of
certain TFTP options or read/write access.

32| Ericsson AB. All Rights Reserved.: inets

tftp

{cal | back, {RegExp, Module, State}}

RegExp = string()
Modul e = atom()
State = term)

Registration of a callback module. When a file is to be transferred, its local filename will be matched to the
regular expressions of the registered callbacks. The first matching callback will be used the during the transfer.
Seeread file/3 and write file/3.

The callback module must implement thet f t p behavior, CALLBACK FUNCTIONS
{l ogger, Modul e}
Modul e = nodul e() ()

Callback module for customized logging of error, warning and info messages. >The callback module must
implement thet f t p_I ogger behavior, LOGGER FUNCTIONS. The default moduleist ft p_I ogger .

{max_retries, MaxRetries}
MaxRetries = int()
Threshold for the maximal number of retries. By default the server/client will try to resend a message up to 5
times when the timeout expires.

Exports

start(Options) -> {ok, Pid} | {error, Reason}

Types:
Options = [option()]
Pid = pid()

Reason =term()

Starts adaemon process which listens for udp packets on a port. When it receives arequest for read or write it spawns
atemporary server process which handles the actual transfer of the (virtual) file.

read_fil e(RenoteFil enanme, Local Fil enane, Options) -> {ok, LastCall backStat e}
| {error, Reason}

Types.
RemoteFilename = string()
LocalFilename = binary | string()
Options = [option()]
LastCallback State = term()
Reason =term()

Reads a (virtua) file Renot eFi | enane from aTFTP server.

If Local Fi | enane istheatombi nary,tftp_bi nary isusedascallback module. It concatenatesall transferred
blocks and returnsthem as one single binary in Last Cal | backSt at e.

If Local Fi | enane isastring andtherearenoregistered callback modules,t ft p_f i | e isused ascallback module.
It writes each transferred block to the file named Local Fi | enane and returns the number of transferred bytesin
Last Cal | backSt at e.

Ericsson AB. All Rights Reserved.: inets | 33

tftp

If Local Fi | enamne isastring and there are registered callback modules, Local Fi | enane istested against the
regexps of these and the callback module corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

wite_file(RenoteFil ename, Local Fil enanme, Options) -> {ok, LastCallbackStat e}
| {error, Reason}

Types:
RemoteFilename = string()
L ocalFilename = binary() | string()
Options = [option()]
LastCallbackState =term()
Reason = term()
Writes a (virtua) file Renot eFi | enane to a TFTP server.

If Local Fi | enameisabinary,t ft p_bi nary isused ascallback module. The binary istransferred block by block
and the number of transferred bytesisreturned in Last Cal | backSt at e.

If Local Fi | enane is a string and there are no registered callback modules, tftp_fil e is used as callback
module. It reads the file named Local Fi | ename block by block and returns the number of transferred bytes in
Last Cal | backSt at e.

If Local Fi | enane isastring and there are registered callback modules, Local Fi | enane istested against the
regexps of these and the callback module corresponding to the first match is used, or an error tuple is returned if no
matching regexp is found.

i nfo(daenons) -> [{Pid, Options}]
Types.

Pid = [pid()(]

Options = [option()]

Reason =term()

Returnsinfo about all TFTP daemon processes.

i nfo(servers) -> [{Pid, Options}]
Types.

Pid = [pid()()]

Options = [option()]

Reason =term()

Returnsinfo about all TFTP server processes.

info(Pid) -> {ok, Options} | {error, Reason}
Types:

Options = [option()]

Reason =term()
Returnsinfo about a TFTP daemon, server or client process.

change_confi g(daenons, Options) -> [{Pid, Result}]
Types:

34 | Ericsson AB. All Rights Reserved.: inets

tftp

Options = [option()]

Pid = pid()

Result = ok | {error, Reason}
Reason =term()

Changes config for all TFTP daemon processes

change_config(servers, Options) -> [{Pid, Result}]

Types:
Options = [option()]
Pid = pid()

Result = ok | {error, Reason}
Reason =term()

Changes config for all TFTP server processes

change config(Pid, Options) -> Result
Types.

Pid = pid()

Options = [option()]

Result = ok | {error, Reason}

Reason =term()

Changes config for a TFTP daemon, server or client process

start() -> ok | {error, Reason}
Types:

Reason =term()
Starts the I nets application.

CALLBACK FUNCTIONS

At f t p calback module should be implemented asat f t p behavior and export the functions listed below.

On the server side the callback interaction starts with a call to open/ 5 with the registered initial callback state.
open/ 5 isexpected to open the (virtua) file. Then either ther ead/ 1 orwr i t e/ 2 functionsareinvoked repeatedly,
once per transferred block. At each function call the state returned from the previous call is obtained. When the last
block has been encountered ther ead/ 1 or wri t e/ 2 functions is expected to close the (virtual) file and return its
last state. Theabor t / 3 function isonly used in error situations. pr epar e/ 5 isnot used on the server side.

On the client side the callback interaction is the same, but it starts and ends a bit differently. It starts with a call to
pr epar e/ 5 with the same arguments as open/ 5 takes. pr epar e/ 5 is expected to validate the TFTP options,
suggested by the user and return the subset of them that it accepts. Then the options is sent to the server which will
perform the same TFTP option negotiation procedure. The options that are accepted by the server are forwarded to
theopen/ 5 function on the client side. On the client side the open/ 5 function must accept all option asis or reject
the transfer. Then the callback interaction follows the same pattern as described above for the server side. When
the last block is encountered inr ead/ 1 or wri t e/ 2 the returned state is forwarded to the user and returned from
read file/Sorwite file/3.

Ericsson AB. All Rights Reserved.: inets | 35

tftp

If a callback (which performs the file access in the TFTP server) takes too long time (more than the double TFTP
timeout), the server will abort the connection and send an error reply to the client. This implies that the server will
rel ease resources attached to the connection faster than before. The server simply assumes that the client has given up.

If the TFTP server receives yet another request from the same client (same host and port) whileit already has an active
connection to the client, it will smply ignore the new request if the request is equal with the first one (same filename
and options). Thisimplies that the (new) client will be served by the already ongoing connection on the server side.
By not setting up yet another connection, in parallel with the ongoing one, the server will consumer lesser resources.

Exports

prepare(Peer, Access, Filenane, Mde, SuggestedOptions, Initial State) -> {ok,
AcceptedOptions, NewState} | {error, {Code, Text}}

Types:

Peer = {Peer Type, PeerHost, Peer Port}

PeerType=inet | inet6

PeerHost = ip_address()

PeerPort = integer ()

Access=read | write

Filename = string()

Mode = string()

SuggestedOptions = AcceptedOptions = [{K ey, Value}]
Key = Value = string()

InitialState =[] | [{root_dir, string()}]

NewState = term()

Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
lint()

Text = string()

Prepares to open afile on the client side.

No new options may be added, but the ones that are present in Suggest edOpt i ons may be omitted or replaced
with new valuesin Accept edOpt i ons.

Will befollowed by acall to open/ 4 before any read/write accessis performed. Accept edOpt i ons issent to the
server which replieswith those optionsthat it accepts. Thesewill beforwardedtoopen/ 4 asSuggest edOpt i ons.

open(Peer, Access, Filenane, Mde, SuggestedOptions, State) -> {ok,
Accept edOptions, NewState} | {error, {Code, Text}}

Types.
Peer = {Peer Type, PeerHost, Peer Port}
Peer Type = inet | inet6
PeerHost = ip_address()
PeerPort = integer ()
Access=read | write
Filename = string()
Mode = string()

36 | Ericsson AB. All Rights Reserved.: inets

tftp

SuggestedOptions = AcceptedOptions = [{K ey, Value}]
Key = Value = string()
State = InitialState | term()
InitialState =[] | [{root_dir, string()}]
NewState = term()
Code = undef | encent | eacces | enospc
| badop | eexist | baduser | badopt
lint()
Text = string()

Opens afile for read or write access.

On the client side where the open/ 5 call has been preceded by acall to pr epar e/ 5, al options must be accepted
or rejected.

On the server side, where there isno preceding pr epar e/ 5 call, no new options may be added, but the onesthat are
present in Suggest edOpt i ons may be omitted or replaced with new valuesin Accept edQpt i ons.

read(State) -> {nmore, Bin, NewState} | {last, Bin, FileSize} | {error, {Code,
Text}}

Types:

State = NewState = term()

Bin = binary()

FileSize=int()

Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
lint()

Text = string()

Read a chunk from thefile.

Thecallback function isexpected to closethe filewhen thelast file chunk isencountered. When an error isencountered
the callback function is expected to clean up after the aborted file transfer, such as closing open file descriptors etc.
In both cases there will be no more callsto any of the callback functions.

wite(Bin, State) -> {nore, NewState} | {last, FileSize} | {error, {Code,
Text}}

Types.

Bin = binary()

State = NewState = term()

FileSize=int()

Code = undef | encent | eacces | enospc
| badop | eexist | baduser | badopt
lint()

Text = string()

Write achunk to thefile.

Ericsson AB. All Rights Reserved.: inets | 37

tftp

The callback function isexpected to close the filewhen thelast file chunk is encountered. When an error isencountered
the callback function is expected to clean up after the aborted file transfer, such as closing open file descriptors etc.
In both cases there will be no more callsto any of the callback functions.

abort (Code, Text, State) -> ok
Types:

Code = undef | enoent | eacces | enospc
| badop | eexist | baduser | badopt
lint()

Text = string()

State=term()

Invoked when the file transfer is aborted.

The callback function is expected to clean up its used resources after the aborted file transfer, such as closing open file
descriptors etc. The function will not beinvoked if any of the other callback functionsreturnsan error, asit is expected
that they already have cleaned up the necessary resources. It will however be invoked if the functions fails (crashes).

LOGGER FUNCTIONS

Atftp_| ogger calback module should beimplemented asat ft p_| ogger behavior and export the functions
listed below.

Exports

error_nmsg(Format, Data) -> ok | exit(Reason)
Types:

Format = string()

Data = [term()]

Reason =term()

Log an error message. Seeerror _| ogger:error_nsg/ 2 for details.

war ni ng_nsg(Format, Data) -> ok | exit(Reason)
Types.

Format = string()

Data = [term()]

Reason =term()

Log awarning message. Seeer ror _| ogger: warni ng_nsg/ 2 for details.

info nsg(Format, Data) -> ok | exit(Reason)
Types.

Format = string()

Data = [term()]

Reason =term()

Log aninfomessage. Seeerror | ogger:info_nsg/2 for details.

38 | Ericsson AB. All Rights Reserved.: inets

httpc

httpc

Erlang module

This module provides the APl to a HTTP/1.1 compatible client according to RFC 2616, caching is currently not
supported.

Note:

When starting the | nets application a manager process for the default profile will be started. The functionsin this
API that does not explicitly use a profile will accesses the default profile. A profile keepstrack of proxy options,
cookies and other options that can be applied to more than one request.

If the scheme httpsis used the ssl application needs to be started.

Also note that pipelining will only be used if the pipeline timeout is set, otherwise persistent connections without
pipelining will be used e.i. the client always waits for the previous response before sending the next request.

There are some usage examplesin the Inets User's Guide.

COMMON DATA TYPES

Type definitions that are used more than once in this module:

bool ean() = true | false

string() = list of ASCII characters

request _id() = ref()

profile() = atom()

pat h() = string() representing a file path or directory path
i p_address() = See inet(3)

See the Options used by gen_tcp(3) and
ssl (3) connect (s)

socket _opt ()

HTTP DATA TYPES
Type definitions that are related to HTTP:
For more information about HTTP see rfc 2616

met hod()
request ()

head | get | put | post | trace | options | delete

{url (), headers()} |

{url (), headers(), content_type(), body()}

string() - Syntax according to the URI definition in rfc 2396, ex: "http://ww.erl ang. org"
{http_version(), status_code(), reason_phrase()}

string() ex: "HTTP/1.1"

url ()
status_line()
http_version()

stat us_code() = integer()
reason_phrase() = string()

content _type() = string()

headers() = [header ()]

header () = {field(), value()}
field() = string()

val ue() = string()

Ericsson AB. All Rights Reserved.: inets | 39

httpc

body ()
filenane()

string() | binary()
string()

SSL DATATYPES
Some type definitions relevant when using https, for details sdl(3):

{password, string()}
{cacertfile, path()}
{ci phers, string()}

ssl _options() = {verify, code()} |
{dept h, depth()} |

{certfile, path()} |

{keyfile, path()} |

I

I

HTTP CLIENT SERVICE START/STOP

A HTTP client can be configured to start when starting the inets application or started dynamically in runtime by
calling the inets application APl i nets: start(httpc, ServiceConfig), orinets:start(httpc,
Servi ceConfig, How) seeinets(3) Below follows adescription of the available configuration options.

{profile, profile()}
Name of the profile, see common data types below, this option is mandatory.
{data_dir, path()}
Directory where the profile may save persistent data, if omitted all cookies will be treated as session cookies.

The client can be stopped using inets:stop(httpc, Pid) or inets:stop(httpc, Profile).

Exports

request(Ul) ->
request (Url, Profile) -> {ok, Result} | {error, Reason}
Types:
Url = url()
Result = {status _ling(), header (), body()} | {status _code(), body()} | request_id()
Profile = profile()
Reason = term()

Equivalent to httpc:request(get, { Url, [}, [1, [1)-

request (Met hod, Request, HTTPOptions, Options) ->
request (Met hod, Request, HTTPOptions, Options, Profile) -> {ok, Result} |
{ok, saved_to_file} | {error, Reason}

Types:
M ethod = method()
Request = request()
HTTPOptions = http_options()
http_options() = [http_option()]

40 | Ericsson AB. All Rights Reserved.: inets

httpc

http_option() = {timeout, timeout()} | {connect_timeout, timeout()} | {sd, ss_options()} | {autoredirect,
boolean()} | {proxy_auth, {userstring(), passwordstring()}} | {version, http_version()} | {relaxed,
boolean()}

timeout() = integer () >= 0| infinity
Options = options()

options() = [option()]
option() = {sync, boolean()} | {stream, stream_to()} | {body_format, body format()} | {full_result,
boolean()} | {headers as is, boolean() | {socket_opts, socket_opts()} | {receiver, receiver()}}

stream_to() = none| self | {self, once} | filename()

socket_opts() = [socket_opt()]

receiver () = pid() | function()/1 | {Module, Function, Args}

Module = atom()

Function = atom()

Args=list()

body_format() = string | binary

Result = {status_line(), header (), body()} | {status _code(), body()} | request_id()
Profile = profile()

Reason = term()

Sends a HTTP-request. The function can be both synchronous and asynchronous. In the later case the function will
return { ok, Requestld} and later on the information will be delivered to ther ecei ver depending on that value.

Http option (ht t p_opt i on()) details:

ti meout
Timeout time for the request.
The clock start ticking as soon as the request has been sent.
Timeisin milliseconds.
Defaultstoi nfinity.

connect _ti nmeout
Connection timeout time, used during the initial request, when the client is connecting to the server.
Timeisin milliseconds.
Defaults to the value of thet i meout option.

ssl
If using SSL, these SSL-specific options are used.
Defaultsto[] .

aut or edi r ect

Should the client automatically retreive the information from the new URI and return that as the result instead
of a 30X-result code.

Note that for some 30X-result codes automatic redirect is not allowed in these cases the 30X-result will always
be returned.

Defaultstot r ue.
proxy_aut h
A proxy-authorization header using the provided user name and password will be added to the request.

Ericsson AB. All Rights Reserved.: inets | 41

httpc

Ver si on

Can be used to make the client act asan HTTP/ 1. 0 or HTTP/ 0. 9 client. By default thisisan HTTP/ 1. 1
client. When using HTTP/ 1. O persistent connections will not be used.

Defaultstothetrsing™ HTTP/ 1. 1".
rel axed
If set to true workarounds for known server deviations from the HTTP-standard are enabled.
Defaultstof al se.
Option (opt i on()) details:
sync
Shall the request be synchronous or asynchronous.
Defaultstot r ue.
stream

Streams the body of a 200 or 206 response to the calling process or to a file. When streaming to the calling
processusing the option sel f the the following stream messages will be sent to that process: { http, { Requestld,
stream_start, Headers}, {http, { Requestld, stream, BinBodyPart}, {http, { Requestid, stream end, Headers}.
When streaming to to the calling processes using the option { sel f, once} the first message will have an
additional element e.i. { http, { Requestld, stream_start, Headers, Pid}, thisis the process id that should be used
as an argument to http:stream_next/1 to trigger the next message to be sent to the calling process.

Note that it is possible that chunked encoding will add headers so that there are more headers in the stream_end
message than in the stream_start. When streaming to a file and the request is asynchronous the message { http,
{Requestld, saved to file}} will be sent.

Defaultsto none.
body_f or mat

Defines if the body shall be delivered as a string or as a binary. This option is only valid for the synchronous
request.

Defaultstost ri ng.
full _result

Should a"full result" be returned to the caller (that is, the body, the headers and the entire status-line) or not (the
body and the status code).

Defaultstot r ue.
header _as_is
Shall the headers provided by the user be made lower case or be regarded as case sensitive.

Notethat the http standard requiresthem to be caseinsenstive. Thisfeature should only be used if thereisno other
way to communicate with the server or for testing purpose. Also note that when this option is used no headers
will be automatically added, all necessary headers has to be provided by the user.

Defaultstof al se.
socket _opts
Socket options to be used for this and subsequent request(s).
Overrides any value set by the set_options function.
Note that the validity of the options are not checked in any way.

42 | Ericsson AB. All Rights Reserved.: inets

httpc

Note that this may change the socket behaviour (see inet: setopts/2) for an aready existing, and therefor already
connected request handler.

By defaults the socket options set by the set_options/1,2 function is used when establishing connection.
receiver

Defines how the client will deliver the result for a asynchroneous request (sync hasthevaluef al se).

pi d()

Message(s) will be sent to this processin the format:

{http, Replylnfo}

function/1

Information will be delivered to the receiver via callsto the provided fun:

Recei ver (Repl yI nf 0)

{Modul e, Funcion, Args}
Information will be delivered to the receiver via calls to the callback function:

appl y(Modul e, Function, [Replylnfo | Args])

In all cases above, Repl yl nf o hasthe following structure:

{Request|d, saved_to_file}

{Requestld, {error, Reason}}

{Requestld, Result}

{Request|d, streamstart, Headers}

{Request|d, streamstart, Headers, Handl erPi d}
{Request|d, stream Bi nBodyPart }
{Request|d, stream end, Header s}

Defaultsto thepi d() of the process calling the request function (sel f ()).

cancel _request (Requestld) ->
cancel _request (Requestld, Profile) -> ok

Types:
Requestld =request_id() - A uniqueidentifier asreturned by request/4
Profile = profile&()

Cancels an asynchronous HTTP-request.

set _options(Options) ->
set_options(Options, Profile) -> ok | {error, Reason}
Types:

Options=[Option]

Ericsson AB. All Rights Reserved.: inets | 43

httpc

Option = {proxy, {Proxy, NoProxy}} | {max_sessions, MaxSessions} | {max_keep_alive length,
MaxKeepAlive} | {keep_alive_timeout, KeepAliveTimeout} | {max_pipeline_length, MaxPipeline} |
{pipeline_timeout, PipelineTimeout} | {cookies, CookieM ode} | {ipfamily, IpFamily} | {ip, IpAddress} |
{port, Port} | {socket_opts, socket_opts()} | {verbose, VerboseM ode}

Proxy = {Hostname, Port}

Hostname = string()

ex: "localhost" or "foo.bar.se"

Port = integer ()

ex: 8080

socket_opts() = [socket_opt()]

The options are appended to the socket options used by the client.

These are the default values when anew request handler is started (for the initial connect). They are passed
directly to the underlying transport (gen_tcp or ssl) without verification!

NoProxy = [NoProxyDesc]

NoProxyDesc = DomainDesc | HostName | | PDesc

DomainDesc =" *.Domain"

ex: "*.ericsson.se”

IpDesc = string()

ex: "134.138" or "[FEDC:BA98" (all |P-addresses starting with 134.138 or FEDC:BA98), "66.35.250.150" or
"[2010:836B:4179::836B:4179]" (a complete IP-address).

MaxSessions = integer ()

Default is 2. Maximum number of persistent connections to a host.

MaxK egpAlive = integer ()

Default is 5. Maximum number of outstanding requests on the same connection to a host.

KeepAliveTimeout = integer ()

Default is 120000 (= 2 min). If a persistent connection isidle longer than the keep_alive timeout the client will
close the connection. The server may also have a such atime out but you should not count on it!

M axPipeline = integer ()

Default is 2. Maximum number of outstanding requests on a pipelined connection to a host.

PipelineTimeout = integer ()

Default is 0, which will result in pipelining not being used. If a persistent connection isidle longer than the
pipeline_timeout the client will close the connection.

CookieM ode = enabled | disabled | verify

Default isdisabled. If Cookies are enabled all valid cookies will automatically be saved in the client manager's
cookie database. If the option verify is used the function http:verify cookie/2 has to be called for the cookie to
be saved.

IpFamily = inet | inet6 | inet6fb4
By default inet. When itisset toi net 6f b4 you can use both ipv4 and ipv6. It first triesi net 6 and if that

does not worksfallsback to i net . The option is here to provide aworkaround for buggy ipv6 stacks to ensure
that ipv4 will always work.

IpAddress=ip_address()

If the host has several network interfaces, this option specifies which one to use. See gen_tcp:connect/3,4 for
more info.

Port = integer ()
Specify which local port number to use. See gen_tcp:connect/3,4 for more info.

44 | Ericsson AB. All Rights Reserved.: inets

httpc

VerboseM ode = false | verbose | debug | trace

Default isfalse. This option is used to switch on (or off) different levels of erlang trace on the client. Itisa
debug feature.

Profile = profile()
Sets options to be used for subsequent requests.

Note:

If possible the client will keep its connections alive and use persistent connections with or without pipeline
depending on configuration and current circumstances. The HTTP/1.1 specification does not provide aguideline
for how many requests that would be ideal to be sent on a persistent connection, this very much depends on the
application. Note that avery long queue of requests may cause auser perceived delays as earlier request may take
along time to complete. The HTTP/1.1 specification does suggest alimit of 2 persistent connections per server,
which is the default value of the max_sessions option.

stream next (Pid) -> ok
Types:
Pid = pid() - asreceived in the stream_start message

Triggers the next message to be streamed, e.i. same behavior as active once for sockets.

st ore_cooki e(Set Cooki eHeaders, Ul) ->
store_cooki e(Set Cooki eHeaders, Url, Profile) -> ok | {error, Reason}

Types:
SetCookieHeaders = headers() - wherefield =" set-cookie"
Url = url()
Profile = profile()

Saves the cookies defined in SetCookieHeaders in the client profile's cookie database. Y ou need to call this function
if you set the option cookiesto ver i f y. If no profileis specified the default profile will be used.

cooki e_header (Url) ->
cooki e_header (Url, Profile) -> header() | {error, Rason}

Types:
Url =url()
Profile = profilg()

Returns the cookie header that would be sent when making a request to Url using the profile Profile. If no profileis
specified the default profile will be used.

reset cookies() -> void()
reset cookies(Profile) -> void()

Types:
Profile = profile()
Resets (clears) the cookie database for the specified Profile. If no profileis specified the default profile will be used.

whi ch_cooki es() -> cookies()

Ericsson AB. All Rights Reserved.: inets | 45

httpc

whi ch_cooki es(Profile) -> cookies()
Types.
Profile = profile()
cookies() = [cooie_stores()]
cookie_stores() = {cookies, icookies()} | {session_cookies, icookies()}
icookies() = [icookie()]
cookie() = term()

This function produces a list of the entire cookie database. It is intended for debugging/testing purposes. If no profile
is specified the default profile will be used.

SEE ALSO
RFC 2616, inets(3), gen_tcp(3), sd(3)

46 | Ericsson AB. All Rights Reserved.: inets

httpd

httpd

Erlang module

Documents the HTTP server start options, some administrative functions and also specifies the Erlang Web server
callback API

COMMON DATA TYPES

Type definitions that are used more than once in this module:

boolean() = true | false

string() = list of ASCII characters

path() = string() - representing a file or directory path.

i p_address() = {N1, N2, N3, N4} % I Pv4 | {K1l, K2, K3, K4, K5, K6, K7, K8} % | Pv6
hostname() = string() - representing a host ex "foo.bar.cont
property() = atom()

ERLANG HTTP SERVER SERVICE START/STOP

A web server can be configured to start when starting the inets application or started dynamically in runtime by
calling the Inets application APl i nets: start(httpd, ServiceConfig),orinets:start(httpd,
Servi ceConfig, How), seeinets(3) Below follows a description of the available configuration options, also
called properties.

File properties

When the web server is started at application start time the properties should be fetched from a configuration file that
could consist of aregular erlang property list, ei. [{Opti on, Value}] where Option = property()

and Val ue = term(), followed by afull stop, or for backwards compatibility an Apache like configuration file.
If the web server is started dynamically at runtime you may still specify a file but you could also just specify the
complete property list.

{proplist_file, path()}
If this property is defined inets will expect to find all other properties defined in thisfile. Note that the file must
include all properties listed under mandatory properties.

{file, path()}
If this property is defined inets will expect to find all other properties defined in thisfile, that uses Apache like
syntax. Note that the file must include all properties listed under mandatory properties. The Apache like syntax
isthe property, written as one word where each new word begins with a capital, followed by a white-space
followed by the value followed by anew line. Ex:

{server_root, "/urs/local/ww'} -> ServerRoot /usr/| ocal/ww

With a few exceptions, that are documented for each property that behaves differently, and the specia case
{directory, { path(), PropertyList}} and { security_directory, {Dir, PropertyList}} that are represented as:.

<Directory Dir>

Ericsson AB. All Rights Reserved.: inets | 47

httpd

<Properties handl ed as descri bed above>
</Directory>

Note:

The properties proplist_file and file are mutually exclusive.

Mandatory properties

{port, integer()}
The port that the HTTP server shall listen on. If zero is specified as port, an arbitrary available port will be
picked and you can use the httpd:info/2 function to find out which port was picked.

{server_name, string()}
The name of your server, normally afully qualified domain name.

{server_root, path()}
Defines the servers home directory where log files etc can be stored. Relative paths specified in other properties
refer to this directory.

{ document_root, path()}
Defines the top directory for the documents that are available on the HTTP server.

Communication properties

{bind_address, ip_address() | hosthname() | any}
Defaultsto any. Note that any is denoted * in the apache like configuration file.
{socket_type, ip_comm | sd}

Defaultstoi p_comm
{ipfamily, inet | inet6 | inet6fb4}

Defaultstoi net 6f b4.

Note that this option is only used when the option socket _t ype hasthevaluei p_comm
Erlang Web server APl modules

{modules, [atom()]}
Defines which modules the HTTP server will use to handle requests. Defaultsto: [nod_al i as,
mod_auth, nod_esi, nod_actions, nod cgi, nod dir, nod _get, nod_head,
mod | og, nod_di sk_| og] Notethat some mod-modules are dependent on others, so the order can not
be entirely arbitrary. Seethe Inets Web server Modulesin the Users guide for more information.

Limit properties

{disable_chunked transfer_encoding_send, boolean()}
This property alows you to disable chunked transfer-encoding when sending aresponseto aHTTP/1.1 client,
by default thisisfalse.

{keep_alive, boolean()}
Instructs the server whether or not to use persistent connections when the client claimsto be HTTP/1.1
compliant, default is true.

{keep_alive_timeout, integer()}
The number of seconds the server will wait for a subsequent request from the client before closing the
connection. Default is 150.

{max_body_size, integer()}
Limits the size of the message body of HTTP request. By the default thereis no limit.

48 | Ericsson AB. All Rights Reserved.: inets

httpd

{max_clients, integer()}
Limits the number of simultaneous requests that can be supported. Defaults to 150.

{max_header_size, integer()}
Limits the size of the message header of HTTP request. Defaults to 10240.

{max_uri, integer()}
Limits the size of the HTTP request URI. By default thereis no limit.

{max_keep alive requests, integer()}
The number of request that a client can do on one connection. When the server has responded to the number of
reguests defined by max_keep_alive requests the server close the connection. The server will close it even if
there are queued request. Defaults to no limit.

Administrative properties
{mime_types, [{ MimeType, Extension}] | path()}

Where MimeType = string() and Extension = string(). Files delivered to the client are MIME typed according
to RFC 1590. File suffixes are mapped to MIME types before file delivery. The mapping between file suffixes
and MIME types can be specified as an Apache like file as well as directly in the property list. Such afile may
look like:

M ME type Extension
text/htm htnml htm
text/plain asc txt

Defaultsto [{"html","text/html"} {"htm","text/html"}]

{mime_type, string()}
When the server is asked to provide a document type which cannot be determined by the MIME Type Settings,
the server will use this default type.

{server_admin, string()}
ServerAdmin defines the email-address of the server administrator, to be included in any error messages
returned by the server.

{log_format, common | combined}

Defines if access logs should be written according to the common log format or to the extended common log
format. The cormon format is one line that looks like this. r endt ehost rfc931 aut huser [date]
"request" status bytes

r enot ehost

Renot e

rfc93l

The client's renpte usernane (RFC 931)

aut huser

The username with which the user authenticated hinself.
[dat e]

Date and tine of the request (RFC 1123).

"request"

The request line exactly as it cane fromthe client(RFC 1945).
st atus

The HTTP status code returned to the client (RFC 1945).
byt es

The content-1ength of the docunent transferred

The conbi ned format is on line that look like this: r enot ehost rfc931 aut huser [date]
"request" status bytes "referer" "user_agent"

Ericsson AB. All Rights Reserved.: inets | 49

httpd

"referer"

The url the client was on before

requesting your url. (If it could not be determ ned a m nus
sign will be placed in this field)

"user _agent"

The software the client clains to be using. (If it

could not be determned a minus sign will be placed in
this field)

This affects the access logs written by mod_log and mod_disk_log.
{error_log_format, pretty | compact}

Defaults to pretty. If the error log is meant to be read directly by a human pr et ty will be the best option.
pr et t y hasthe format corresponding to:

io:format("[~s] ~s, reason: ~n ~p ~n~n", [Date, Msg, Reason]).

compact hasthe format corresponding to:

io:format("[~s] ~s, reason: ~w ~n", [Date, Msg, Reason]).

This affects the error logs written by mod_log and mod_disk_log.
ssl properties

{sdl_ca certificate file, path()}
Used as cacertfile option in ssl:listen/2 see sdl(3)
{sdl_certificate file, path()}
Used as certfile option in s3l:listen/2 see sdl(3)
{ssl_ciphers, list()}
Used as ciphers option in ssl:listen/2 see ssl(3)
{ssl_verify_client, integer()}
Used as verify option in ssl:listen/2 see sdl(3)
{ssl_verify_depth, integer()}
Used as depth option in ssl:listen/2 see sdl(3)
{ssl_password_callback_function, atom()}
Used together with ssl_password_callback_module to retrieve avalue to use as password option to ssl:listen/2
see sdl(3)
{ssl_password_callback _arguments, list()}
Used together with ssl_password_callback_function to supply alist of argumentsto the callback function. If
not specified the callback function will be assumed to have arity O.
{ssl_password_callback_module, atom()}
Used together with ssl_password_callback_function to retrieve a value to use as password option to s3l:listen/2
see sdl(3)

URL aliasing properties - requires mod_alias

{alias, {Alias, RealName} }
Where Alias = string() and RealName = string(). The Alias property allows documents to be stored in the local
file system instead of the document_root location. URLs with a path that begins with url-path is mapped to
local files that begins with directory-filename, for example:

50 | Ericsson AB. All Rights Reserved.: inets

httpd

{alias, {"/image", "/ftp/publ/inmge"}

and an access to http://your.server.org/image/foo.gif would refer to the file /ftp/pub/image/foo.gif.
{directory_index, [string()]}

Directorylndex specifies alist of resourcesto look for if aclient requests adirectory using a/ at the end of the

directory name. file depicts the name of afilein the directory. Several files may be given, in which case the

server will return the first it finds, for example:

{directory_index, ["index.hm", "welcone.htm "]}

and access to http://your.server.org/docs would return http://your.server.org/docs/index.html or http://
your.server.org/docswel come.html if index.html do not exist.

CGil properties - requires mod_cgi

{script_alias, { Alias, RealName} }
Where Alias = string() and RealName = string(). Has the same behavior as the Alias property, except that it
also marks the target directory as containing CGI scripts. URLs with a path beginning with url-path are mapped
to scripts beginning with directory-filename, for example:

{script_alias, {"/cgi-bin/", "/web/cgi-bin/"}

and an access to http://your.server.org/cgi-bin/foo would cause the server to run the script /web/cgi-bin/foo.
{ script_nocache, boolean()}
If ScriptNoCache is set to true the HTTP server will by default add the header fields necessary to prevent
proxies from caching the page. Generally thisis something you want. Defaults to false.
{script_timeout, integer()}
The time in seconds the web server will wait between each chunk of data from the script. If the CGI-script not
delivers any data before the timeout the connection to the client will be closed. Defaultsto 15.
{action, { MimeType, CgiScript}} - requires mod_action
Where MimeType = string() and CgiScript = string(). Action adds an action, which will activate a cgi-script
whenever afile of acertain mime-type isrequested. It propagates the URL and file path of the requested
document using the standard CGI PATH_INFO and PATH_TRANSLATED environment variables.

{action, {"text/plain", "/cgi-bin/log_and_deliver_text"}

{ script, { Method, CgiScript}} - requires mod_action
Where Method = string() and CgiScript = string(). Script adds an action, which will activate a cgi-script
whenever afileisrequested using a certain HTTP method. The method is either GET or POST as defined
in RFC 1945. It propagates the URL and file path of the requested document using the standard CGI
PATH_INFO and PATH_TRANSLATED environment variables.

{script, {"PUT", "/cgi-bin/put"}

ES properties - requires mod_esi

{erl_script_alias, { URLPath, [AllowedModule]} }
Where URL Path = string() and AllowedModule = atom(). erl_script_alias marks all URLs matching url-path as
erl scheme scripts. A matching URL is mapped into a specific module and function. For example:

Ericsson AB. All Rights Reserved.: inets | 51

httpd

{erl _script_alias, {"/cgi-bin/exanple" [httpd_exanple]}

and arequest to http://your.server.org/cgi-bin/example/httpd_example:yahoo would refer to
httpd_example:yahoo/2 and http://your.server.org/cgi-bin/exampl e/other:yahoo would not be allowed to
execute.
{ erl_script_nocache, boolean()}
If erl_script_nocacheis set to true the server will add http header fields that prevents proxies from caching the
page. Thisis generally agood ideafor dynamic content, since the content often vary between each request.
Defaultsto false.
{erl_script_timeout, integer()}
If erl_script_timeout sets the time in seconds the server will wait between each chunk of datato be delivered
through mod_esi:deliver/2. Defaults to 15. Thisis only relevant for scripts that uses the erl scheme.
{eval_script_alias, { URLPath, [AllowedModul€e]} }
Where URL Path = string() and AllowedModule = atom(). Same as erl_script_alias but for scripts using the eval
scheme. Note that thisis only supported for backwards compatibility. The eval scheme is deprecated.

Log properties - requires mod_log

{error_log, path()}
Defines the filename of the error log file to be used to log server errors. If the filename does not begin with a
slash (/) it is assumed to be relative to the server_root

{security_log, path()}
Defines the filename of the access log file to be used to log security events. If the filename does not begin with
adash (/) it is assumed to be relative to the server_root.

{transfer_log, path()}
Defines the filename of the accesslog file to be used to log incoming requests. If the filename does not begin
with adash (/) it is assumed to be relative to the server_root.

Disk Log properties - requiresmod_disk log

{disk_log_format, internal | external}
Definesthe file-format of the log files see disk_log for more information. If the internal file-format is used,
the logfile will be repaired after a crash. When alog fileis repaired data might get lost. When the external file-
format is used httpd will not start if the log file is broken. Defaults to external.

{error_disk_log, internal | external}
Defines the filename of the (disk_log(3)) error log file to be used to log server errors. If the filename does not
begin with adlash (/) it is assumed to be relative to the server_root.

{error_disk_log_size, { MaxBytes, MaxFiles}}
Where MaxBytes = integer() and MaxFiles = integer(). Defines the properties of the (disk_log(3)) error log file.
Thedisk_log(3) error log fileis of type wrap log and max-bytes will be written to each file and max-files will
be used before the first fileis truncated and reused.

{'security_disk_log, path()}
Defines the filename of the (disk_log(3)) access log file which logs incoming security eventsi.e authenticated
reguests. If the filename does not begin with aslash (/) it is assumed to be relative to the server_root.

{security_disk_log_size, { MaxBytes, MaxFiles}}
Where MaxBytes = integer() and MaxFiles = integer(). Defines the properties of the disk_log(3) accesslog file.
The disk_log(3) accesslog fileis of type wrap log and max-bytes will be written to each file and max-files will
be used before the first fileis truncated and reused.

{transfer_disk_log, path()}
Defines the filename of the (disk_log(3)) access log file which logs incoming requests. If the filename does not
begin with aslash (/) it is assumed to be relative to the server_root.

52 | Ericsson AB. All Rights Reserved.: inets

httpd

{transfer_disk_log_size, { MaxBytes, MaxFiles}}
Where MaxBytes = integer() and MaxFiles = integer(). Defines the properties of the disk_log(3) accesslog file.
The disk_log(3) accesslog fileis of type wrap log and max-bytes will be written to each file and max-files will
be used before the first fileis truncated and reused.

Authentication properties - requires mod_auth

{directory, {path(), [{property(), term()}] }}
Here follows the valid properties for directories

{alow_from, all | [RegxpHostString]}
Defines a set of hosts which should be granted access to a given directory. For example:

{allow from ["123.34.56.11", "150.100.23"]

The host 123.34.56.11 and all machines on the 150.100.23 subnet are allowed access.
{deny_from, all | [RegxpHostString]}
Defines a set of hosts which should be denied access to a given directory. For example:

{deny from ["123.34.56.11", "150.100.23"]

The host 123.34.56.11 and all machines on the 150.100.23 subnet are not allowed access.

{auth_type, plain | dets | mnesia}
Sets the type of authentication database that is used for the directory.The key difference between the different
methods is that dynamic data can be saved when Mnesia and Detsis used. This property is called AuthDbType
in the Apache like configuration files.

{auth_user_file, path()}
Sets the name of afilewhich containsthe list of users and passwords for user authentication. filename can be
either absolute or relative to the ser ver _r oot . If using the plain storage method, thisfileis aplain text file,
where each line contains a user name followed by a colon, followed by the non-encrypted password. If user
names are duplicated, the behavior is undefined. For example:

ragnar: s7Xxv7
edwar d: wwj au8

If using the dets storage method, the user database is maintained by dets and should not be edited by hand.
Use the API functionsin mod_auth module to create / edit the user database. This directive isignored if using
the mnesia storage method. For security reasons, make surethat theaut h_user fi | e isstored outside
the document tree of the Web server. If it is placed in the directory which it protects, clientswill be able to
download it.

{auth_group _file, path()}
Sets the name of afile which containsthelist of user groups for user authentication. Filename can be either
absolute or relativetotheser ver _r oot . If you use the plain storage method, the group fileisa plain text
file, where each line contains a group name followed by a colon, followed by the member user names separated
by spaces. For example:

groupl: bob joe ante

If using the dets storage method, the group database is maintained by dets and should not be edited by hand.
Use the API for mod_auth module to create / edit the group database. This directiveisignored if using the
mnesia storage method. For security reasons, make sure that theaut h_gr oup_fi | e isstored outside

Ericsson AB. All Rights Reserved.: inets | 53

httpd

the document tree of the Web server. If it is placed in the directory which it protects, clients will be able to
download it.

{auth_name, string()}
Sets the name of the authorization realm (auth-domain) for adirectory. This string informs the client about
which user name and password to use.

{auth_access password, string()}
If set to other than "NoPassword" the password is required for all API calls. If the password is set to
"DummyPassword" the password must be changed before any other API calls. To secure the authenticating
data the password must be changed after the web server is started since it otherwise iswritten in clear text in
the configuration file.

{require_user, [string()1}
Defines users which should be granted access to a given directory using a secret password.

{require_group, [string()]}
Defines users which should be granted access to a given directory using a secret password.

Htaccess authentication properties - requires mod_htaccess

{access files, [path()]}
Specify which filenames that are used for access-files. When arequest comes every directory in the path to the
reguested asset will be searched after files with the names specified by this parameter. If such afileisfound the
filewill be parsed and the restrictions specified in it will be applied to the request.

Security properties - requires mod_security

{security_directory, {path(), [{property(), term()}]}
Here follows the valid properties for security directories

{security_data file, path()}
Name of the security datafile. The filename can either absolute or relative to the server_root. Thisfileis used
to store persistent data for the mod_security module.

{'security_max_retries, integer()}
Specifies the maximum number of tries to authenticate a user has before the user is blocked out. If auser
successfully authenticates when the user has been blocked, the user will receive a 403 (Forbidden) response
from the server. If the user makes afailed attempt while blocked the server will return 401 (Unauthorized), for
security reasons. Defaults to 3 may also be set to infinity.

{'security_block_time, integer()}
Specifies the number of minutes a user is blocked. After this amount of time, he automatically regains access.
Defaultsto 60

{security fail_expire_time, integer()}
Specifies the number of minutes afailed user authentication is remembered. If a user authenticates after this
amount of time, his previous failed authentications are forgotten. Defaultsto 30

{'security_auth_timeout, integer()}
Specifies the number of seconds a successful user authentication is remembered. After thistime has passed, the
authentication will no longer be reported. Defaults to 30.

Exports

info(Pid) ->

info(Pid, Properties) -> [{Option, Value}]
Types:

Properties = [property()]
Option = property()
Value=term()

54 | Ericsson AB. All Rights Reserved.: inets

httpd

Fetchesinformation about the HT TP server. When called with only the pid al properties are fetched, when called with
alist of specific properties they are fetched. Available properties are the same as the servers start options.

Note:

Pid is the pid returned from inets:start/[2,3]. Can also be retrieved form inets:services/0, inets:services info/0
seeinets(3)

i nfo(Address, Port) ->
i nfo(Address, Port, Properties) -> [{Option, Value}]

Types:
Address=ip_address()
Port = integer ()
Properties = [property()]
Option = property()
Value=term()
Fetches information about the HTTP server. When called with only the Address and Port all properties are fetched,

when called with alist of specific properties they are fetched. Available properties are the same as the servers start
options.

Note:

Address has to be the ip-address and can not be the hostname.

rel oad_config(Config, Mde) -> ok | {error, Reason}
Types:

Config = path() | [{Option, Value}]

Option = property()

Value=term()

Mode = non_disturbing | disturbing

Reloads the HTTP server configuration without restarting the server. Incoming regquests will be answered with a
temporary down message during the time the it takes to reload.

Note:

Available properties are the same as the servers start options, although the properties bind_address and port can
not be changed.

If modeisdisturbing, the server is blocked forcefully and all ongoing requests are terminated and the reload will start
immediately. If mode is non-disturbing, no new connections are accepted, but the ongoing requests are allowed to
complete before the reload is done.

Ericsson AB. All Rights Reserved.: inets | 55

httpd

ERLANG WEB SERVER API DATA TYPES

ModDat a = #nod{}

-record(nod, {
data =[],
socket _type = i p_comm
socket ,
config_db,
net hod,
absol ute_uri,
request uri,
http_versi on,
request _line,
parsed_header =[],
entity_body,
connecti on

1.

The fields of the mod record has the following meaning:

dat a
Type[{I nteracti onKey, I nteracti onVal ue}] isused to propagate data between modules.
Depictedi nt er acti on_dat a() infunction type declarations.

socket _type
socket _t ype(), Indicates whether it isan ip socket or assl socket.

socket
The actual socketini p_commor ssl format depending onthesocket _t ype.

config_db
The config file directives stored as key-value tuplesin an ETS-table. Depicted conf i g_db() infunction type
declarations.

net hod
Type" GET" | "POST" | "HEAD' | "TRACE", thatisthe HTTP method.

absol ute_uri
If the request isaHTTP/1.1 request the URI might be in the absolute URI format. In that case httpd will save
the absolute URI in thisfield. An Example of an absolute URI could be" htt p: / / Ser ver Name: Part /
cgi - bi n/ find. pl ?per son=j ocke"

request _uri
The Request - URI asdefined in RFC 1945, for example™ / cgi - bi n/ fi nd. pl ?per son=j ocke"

htt p_version
The HTTP version of the request, that is"HTTP/0.9", "HTTP/1.0", or "HTTP/1.1".

request _I|ine
The Request - Li ne asdefined in RFC 1945, for example” GET / cgi - bi n/ fi nd. pl ?per son=j ocke
HTTP/ 1. 0".

par sed_header
Type[{ Header Key, Header Val ue}], par sed_header containsal HTTP header fields from the
HTTP-request stored in alist as key-value tuples. See RFC 2616 for alisting of all header fields. For example
the date field would be stored as: { " dat e, "Wed, 15 Oct 1997 14:35:17 GUI'}. RFC 2616
defines that HTTP is a case insensitive protocol and the header fields may
be in |l ower case or upper case. Hitpd will ensure that all header field
names are in | ower case.

entity body
TheEnti t y- Body asdefined in RFC 2616, for example data sent from a CGI-script using the POST method.

56 | Ericsson AB. All Rights Reserved.: inets

httpd

connecti on
true | fal se If setto truethe connection to the client is a persistent connection and will not be closed
when the request is served.

ERLANG WEB SERVER API CALLBACK FUNCTIONS

Exports

Modul e: do(ModDat a) - > {proceed, O dData} | {proceed, NewData} | {break,
NewDat a} | done

Types:
OldData = list()

NewData = [{response {StatusCode,Body}}] | [{response{response,Head,Body}}] | [{response,
{already_sent,Statuscode,Size}]

StausCode = integer ()

Body =io_list() | nobody | {Fun, Arg}

Head = [Header Option]

Header Option = {Option, Value} | {code, StatusCode}

Option = accept_ranges | allow | cache_control | content_M D5 | content_encoding | content_language |
content_length | content_location | content_range | content_type | date | etag | expires|last_modified |
location | pragma | retry_after | server |trailer | transfer_encoding

Value = string()

Fun =fun(Arg) -> sent| close | Body

Arg =[term()]
When avalid request reaches httpd it callsdo/ 1 in each module defined by the Modules configuration option. The
function may generate data for other modules or a response that can be sent back to the client.
Thefield dat a in ModDatais alist. Thislist will be the list returned from the last call to do/ 1.

Body isthe body of the http-response that will be sent back to the client an appropriate header will be appended to
the message. St at usCode will be the status code of the response see RFC2616 for the appropriate values.

Head is akey value list of HTTP header fields. The server will construct a HTTP header from this data. See RFC
2616 for the appropriate value for each header field. If the client isaHTTP/1.0 client then the server will filter thelist
so that only HTTP/1.0 header fields will be sent back to the client.

If Body isreturned and equal to { Fun, Ar g}, the Web server will try appl y/ 2 on Fun with Ar g as argument and
expect that the fun either returns a list (Body) that is a HTTP-repsonse or the atom sent if the HTTP-response is
sent back to the client. If close is returned from the fun something has gone wrong and the server will signal this to
the client by closing the connection.

Modul e: | oad(Li ne, Accln)-> eof | ok | {ok, AccCQut} | {ok, AccQut, {Option,
Val ue}} | {ok, AccCQut, [{Option, Value}]} | {error, Reason}

Types:
Line=string()
Accln = [{Option, Value}]
AccOut = [{Option, Value}]
Option = property()
Value=term()

Ericsson AB. All Rights Reserved.: inets | 57

httpd

Reason = term()

Load isused to convert alinein a Apachelike configuration filetoa{ Opt i on, Val ue} tuple. Some more complex
configuration options such asdi rect ory and securi ty_di rect ory will create an accumulator.This function
does only need clauses for the options implemented by this particular callback module.

Modul e: store({Option, Value}, Config)-> {ok, {Option, Newvalue}} | {error,
Reason}

Types:

Line=string()

Option = property()

Config = [{Option, Value}]

Value=term()

Reason = term()
This function is used to check the validity of the configuration options before saving them in the internal database.
This function may also have a side effect e.i. setup necessary extra resources implied by the configuration option. It

can al so resol ve possi ble dependencies among configuration options by changing the value of the option. Thisfunction
does only need clauses for the options implemented by this particular callback module.

Modul e: renmove(ConfigDB) -> ok | {error, Reason}
Types:

ConfigDB = ets table()

Reason =term()

When httpd is shutdown it will try to executer enrove/ 1 ineach Erlang web server callback module. The programmer
may use this function to clean up resources that may have been created in the store function.

ERLANG WEB SERVER API HELP FUNCTIONS

Exports

parse_query(QueryString) -> [{Key, Val ue}]
Types:
QueryString = string()

Key = string()
Value = string()

par se_query/ 1 parsesincoming datato er | and eval scripts (See mod esi(3)) as defined in the standard URL
format, that is'+' becomes 'space’ and decoding of hexadecimal characters (% x).

SEE ALSO
RFC 2616, inets(3), ss(3)

58 | Ericsson AB. All Rights Reserved.: inets

httpd_conf

httpd_conf

Erlang module

This module provides the Erlang Webserver API programmer with utility functions for adding run-time configuration
directives.

Exports

check_enun{ Enunfstri ng, Val i dEnuntStri ngs) -> Result
Types:

EnumString = string()

ValidEnumStrings = [string()]

Result = {ok,atom()} | {error,not_valid}

check_enum 2 checks if Enunstri ng is a valid enumeration of Val i dEnunft ri ngs in which case it is
returned as an atom.

clean(String) -> Stripped
Types:
String = Stripped = string()
cl ean/ 1 removes leading and/or trailing white spacesfrom St r i ng.

customcl ean(String, Before, After) -> Stripped
Types:
Before = After = regexp()
String = Stripped = string()
cust om cl ean/ 3 removes leading and/or trailing white spaces and custom characters from St ri ng. Bef or e
and Af t er areregular expressions, as defined inr egexp(3) , describing the custom characters.

is_directory(FilePath) -> Result
Types:
FilePath = string()
Result = {ok,Directory} | {error,Reason}
Directory = string()
Reason = string() | enoent | eaccess | enotdir | Filelnfo
Filelnfo = Fileinforecord
i s_directory/1 checksif Fi | ePat h isadirectory in which case it is returned. Pleaseread f i | e(3) for a

description of enoent , eaccess and enot di r . The definition of the file info record can be found by including
file.hrl fromthekernel application, seefile(3).

is file(FilePath) -> Result
Types:

FilePath = string()

Result = {ok,File} | {error,Reason}

Ericsson AB. All Rights Reserved.: inets | 59

httpd_conf

File=string()
Reason = string() | enoent | eaccess | enotdir | Filelnfo
Filelnfo = Fileinforecord

is_filellchecksif Fil ePath isaregular filein which caseitisreturned. Readfi | e(3) for adescription of
enoent ,eaccess andenot di r. Thedefinition of thefileinfo record can befound by includingfi | e. hr| from
the kernel application, see file(3).

make integer(String) -> Result
Types:
String = string()
Result = {ok,integer ()} | {error,nomatch}
make i nt eger/ 1 returns an integer representation of St ri ng.

SEE ALSO
httpd(3)

60 | Ericsson AB. All Rights Reserved.: inets

httpd_socket

httpd_socket

Erlang module

This module provides the Erlang Web server APl module programmer with utility functions for generic sockets
communication. The appropriate communication mechanism is transparently used, that isi p_conmmor ssli .

Exports

del i ver (Socket Type, Socket, Data) -> Result
Types:

Socket Type = socket_type()

Socket = socket()

Data=io_list() | binary()

Result = socket_closed | void()

del i ver/ 3 sendstheBi nar y over the Socket usingthe specified Socket Type. Socket and SocketType should
be the socket and the socket_type form the mod record as defined in httpd.hrl

peer nanme(Socket Type, Socket) -> {Port, | PAddress}
Types.

SocketType = socket_type()

Socket = socket()

Port = integer ()

|PAddress=string()

peer nane/ 3 returnsthe Port and | PAddr ess of the remote Socket .

resol ve() -> Host Nane
Types:
HostName = string()
r esol ve/ O returns the official Host Nane of the current host.

SEE ALSO
httpd(3)

Ericsson AB. All Rights Reserved.: inets | 61

httpd_util

httpd_util

Erlang module

This module provides the Erlang Web Server APl module programmer with miscellaneous utility functions.

Exports

convert_request _date(DateString) -> Erl Date| bad_date
Types:
DateString = string()
ErlDate = {{Year ,Month,Date} {Hour ,Min,Sec}}
Year = Month = Date=Hour = Min = Sec = integer()
convert _request _dat e/ 1 convertsDat eSt ri ng to the Erlang date format. DateString must be in one of the
three date formats that is defined in the RFC 2616.

create_etag(Filelnfo) -> Etag
Types:

Filelnfo = file_info()

Etag = string()

create_etag/ 1 caculates the Etag for afile, from it's size and time for last modification. fileinfo is a record
definedinkernel /i ncl ude/file. hrl

decode_hex(HexVal ue) -> DecVal ue
Types:
HexValue = DecValue = string()
Converts the hexadecimal value HexVal ue intoit's decimal equivalent (DecVal ue).

day(Nt hDayOf Week) -> DayOf Week
Types:

NthDayOfWeek = 1-7

DayOfWeek = string()

day/ 1 convertsthe day of the week (Nt hDay Of Week) as an integer (1-7) to an abbreviated string, that is:
1="Mon",2="Tue", .., 7 ="Sa".

flatl engt h(Nest edLi st) -> Size

Types.
NestedList = list()
Size = integer()

fl atl engt h/ 1 computes the size of the possibly nested list Nest edLi st . Which may contain binaries.

hexlist_to_integer(HexString) -> Nunber
Types:

62 | Ericsson AB. All Rights Reserved.: inets

httpd_util

Number =integer ()
HexString = string()
hexl i st _to_i nt eger Convert the Hexadecimal value of HexString to an integer.

i nteger_to_hexlist(Nunber) -> HexString
Types:
Number = integer()
HexString = string()
i nt eger _to_hexli st/ 1 Returnsastring that represents the Number in a Hexadecimal form.

| ookup(ETSTabl e, Key) -> Result
| ookup(ETSTabl e, Key, Undefi ned) -> Result

Types:
ETSTable = ets table()
Key =term()
Result = term() | undefined | Undefined
Undefined = term()
| ookup extracts{ Key, Val ue} tuplesfromETSTabl e andreturnstheVal ue associatedwithKey. If ETSTabl e

isof typebag only thefirst Val ue associated withKey isreturned. | ookup/ 2 returnsundef i ned andl ookup/ 3
returns Undef i ned if no Val ue isfound.

| ookup_m me(Confi gDB, Suf fi x)
| ookup_m me(Confi gDB, Suf fi x, Undefi ned) -> M neType
Types.

ConfigDB = ets table()

Suffix = string()

MimeType = string() | undefined | Undefined

Undefined = term()

| ookup_mi e returns the mime type associated with a specific file suffix as specified in the mi ne. t ypes file
(located in the config directory).

| ookup_m me_def aul t (Confi gDB, Suf fi x)
| ookup_m me_def aul t (Confi gDB, Suf fi x, Undefi ned) -> M neType

Types:
ConfigDB = ets table()
Suffix = string()
MimeType = string() | undefined | Undefined
Undefined = term()
| ookup_m nme_def aul t returns the mime type associated with a specific file suffix as specified in the

m ne. t ypes file(locatedinthe config directory). If no appropriate association can befound thevalue of DefaultType
is returned.

message(St at usCode, Phr aseAr gs, Confi gDB) -> Message
Types.

Ericsson AB. All Rights Reserved.: inets | 63

httpd_util

StatusCode = 301 | 400 | 403 | 404 | 500 | 501 | 504

PhraseArgs =term()

ConfigDB = ets table

M essage = string()
nessage/ 3 returns an informative HTTP 1.1 status string in HTML. Each St at usCode requires a specific
Phr aseAr gs:

301
string(): A URL pointing at the new document position.
400 | 401 | 500
none (No Phr aseAr gs)
403 | 404
string():ARequest-URl asdescribedin RFC 2616.
501
{Met hod, Request URI , HTTPVer si on} : The HTTP Met hod, Request - URI and HTTP- Ver si on as
defined in RFC 2616.
504
string() : A string describing why the service was unavailable.

nmont h(Nt hMont h) -> Mont h
Types:

NthMonth = 1-12

Month = string()

nont h/ 1 convertsthe month Nt hivbnt h as an integer (1-12) to an abbreviated string, that is:
1="Jan", 2="Feb", ..., 12 = "Dec".

mul ti | ookup(ETSTabl e, Key) -> Result
Types.

ETSTable = ets table()

Key =term()

Result = [term()]

mul ti | ookup extracts al { Key, Val ue} tuples from an ETSTabl e and returns allVal ues associated with
theKey inalist.

reason_phrase(St at usCode) -> Description

Types:
StatusCode = 100| 200 | 201 | 202 | 204 | 205 | 206 | 300 | 301 | 302 | 303 | 304 | 400 | 401 | 402 | 403 | 404 | 405
| 406 | 410 411|412 413|414 415|416 | 417 | 500 | 501 | 502 | 503 | 504 | 505

Description = string()

reason_phrase returnsthe Descri pti on of anHTTP 1.1 St at usCode, for example 200 is"OK" and 201 is
"Created". Read RFC 2616 for further information.

rfcl123 date() -> RFCl123Date
rfc1123 dat e({{YYYY, M DD}, { Hour, M n, Sec}}}) -> RFCL123Date

Types:
YYYY =MM =DD =Hour = Min =Sec = integer ()

64 | Ericsson AB. All Rights Reserved.: inets

httpd_util

RFC1123Date = string()

rfcl123_dat e/ O returns the current date in RFC 1123 format. r f c_dat e/ 1 converts the date in the Erlang
format to the RFC 1123 date format.

split(String, Regexp, N) -> SplitRes
Types:
String = RegEXxp = string()
SplitRes = {ok, FieldList} | {error, errordesc()}
Fieldlist = [string()]
N = integer
spl it/ 3 splitstheSt ri nginNchunksusingtheRegExp.split/ 3isisequivaenttor egexp: split/ 2 with
one exception, that is N defines the number of maximum number of fieldsinthe Fi el dLi st .

split_script_path(RequestLine) -> Splitted
Types.
RequestLine = string()
Splitted = not_a_script | {Path, Pathlnfo, QueryString}
Path = QueryString = Pathlnfo = string()

split_script_path/1lisequivdenttosplit_path/ 1 withoneexception. If thelongest possible path is not
aregular, accessible and executable filenot _a_scri pt isreturned.

split_path(RequestLine) -> {Path, QueryStringO Pat hl nf o}
Types.

RequestLine = Path = QueryStringOr Pathl nfo = string()
spl it _path/ 1 splitstheRequest Li ne inafilereference (Pat h) andaQuer ySt ri ng or aPat hl nf o string
asspecifiedin RFC 2616. A Quer y St r i ng isisolated from the Pat h with aquestion mark (?) and Pat hl nf o with
adlash (/). Inthecase of aQuer ySt r i ng, everything beforethe ? isaPat h and everything after aQuer ySt r i ng.
In the case of aPat hl nf o the Request Li ne is scanned from left-to-right on the hunt for longest possible Pat h

being afile or adirectory. Everything after the longest possible Pat h, isolated with a/ , isregarded as Pat hl nf o.
Theresulting Pat h is decoded using decode_hex/ 1 before delivery.

strip(String) -> Stripped
Types:
String = Stripped = string()
stri p/ 1 removes any leading or trailing linear white space from the string. Linear white space should be read as
horizontal tab or space.

suf fix(Fil eNane) -> Suffix
Types:
FileName = Suffix = string()

suf fix/ 1isequivdenttofil ename: ext ensi on/ 1 with one exception, that is Suf f i x is returned without
aleading dot (.).

Ericsson AB. All Rights Reserved.: inets | 65

httpd_util

SEE ALSO
httpd(3)

66 | Ericsson AB. All Rights Reserved.: inets

mod_alias

mod_alias

Erlang module

Erlang Webserver Server internal API for handling of things such asinteraction dataexported by themod_aliasmodule.

Exports

defaul t _i ndex(ConfigDB, Path) -> NewPath
Types:
ConfigDB = config_db()
Path = NewPath = string()
If Pat h isadirectory, def aul t _i ndex/ 2, it starts searching for resources or filesthat are specified in the config
directive Directorylndex. If an appropriateresourceor fileisfound, it is appended to theend of Pat h and then returned.

Pat h isreturned unaltered, if no appropriate fileisfound, or if Pat h isnot adirectory. confi g_db() istheserver
config filein ETS table format as described in Inets Users Guide..

pat h(Pat hDat a, Confi gDB, RequestURI) -> Path
Types.
PathData = interaction_data()
ConfigDB = config_db()
RequestURI = Path = string()
pat h/ 3 returns the actual file Pat h inthe Request URI (See RFC 1945). If the interaction data{ r eal _nane,
{Pat h, Aft er Pat h} } hasbeen exported by mod_alias; Pat h isreturned. If no interaction data has been exported,

ServerRoot is used to generate afile Pat h. confi g_db() andi nteracti on_dat a() are asdefined in Inets
Users Guide.

real _nane(ConfigDB, RequestURI, Aliases) -> Ret
Types:

ConfigDB = config_db()

RequestURI = string()

Aliases = [{FakeName,RealName}]

Ret = {ShortPath,Path,After Path}

ShortPath = Path = After Path = string()
real nane/ 3 traverses Al i ases, typicaly extracted from Conf i gDB, and matches each FakeNane with
Request URI . If amatch isfound FakeNan® isreplaced with Real Nare in the match. The resulting path is split
into two parts, that is Shor t Pat h and Af t er Pat h as defined in httpd_util:split_path/1. Pat h is generated from

Shor t Pat h, that isthe result from default_index/2 with Shor t Pat h asan argument. conf i g_db() istheserver
config filein ETS table format as described in Inets User Guide..

real _script_name(ConfigDB, Request URI, Scri pt Ali ases) -> Ret
Types.

ConfigDB = config_db()

RequestURI = string()

ScriptAliases = [{FakeName RealName}]

Ericsson AB. All Rights Reserved.: inets | 67

mod_alias

Ret = {ShortPath,After Path} | not_a script
ShortPath = After Path = string()

real nane/ 3 traverses Scri pt Al i ases, typicaly extracted from Conf i gDB, and matches each FakeNane
with Request URI . If amatchisfound FakeNane isreplaced with Real Nane in the match. If the resulting match
isnot an executable script not _a_scri pt isreturned. If it isascript the resulting script path isin two parts, that is
Shor t Pat h and Af t er Pat h asdefined in httpd_util: split_script_path/1. conf i g_db() isthe server config file
in ETS table format as described in Inets Users Guide..

68 | Ericsson AB. All Rights Reserved.: inets

mod_auth

mod_auth

Erlang module

This module provides for basic user authentication using textual files, dets databases as well as mnesia databases.

Exports

add_user (User Name, Options) -> true| {error, Reason}

add_user (User Name, Password, UserData, Port, Dir) -> true | {error, Reason}
add_user (User Name, Password, UserData, Address, Port, Dir) -> true | {error,
Reason}

Types:
User Name = string()
Options=[Option]
Option = {password,Password} | {user Data,User Data} | {port,Port} | {addr ,Address} | {dir,Directory} |
{authPasswor d,AuthPasswor d}
Password = string()
User Data = term()
Port = integer ()
Address={A,B,C,D} | string() | undefined
Dir = string()
AuthPassword =string()
Reason = term()
add_user/ 2, add_user/5 andadd_user/ 6 adds a user to the user database. If the operation is successful,

this function returns t r ue. If an error occurs, { er r or , Reason} isreturned. When add_user/ 2 is called the
Password, UserData Port and Dir options is mandatory.

del et e_user (User Nanme, Options) -> true | {error, Reason}
del ete_user (User Name, Port, Dir) -> true | {error, Reason}
del et e_user (User Name, Address, Port, Dir) -> true | {error, Reason}

Types:
User Name = string()
Options=[Option]
Option ={port,Port} | {addr ,Address} | {dir,Directory} | {authPasswor d,AuthPasswor d}
Port = integer ()
Address={A,B,C,D} | string() | undefined
Dir = string()
AuthPassword = string()
Reason =term()
del ete_user/2, delete user/3 and del ete_user/ 4 deletes a user from the user database. If the

operation is succesfull, this function returns t r ue. If an error occurs, { err or, Reason} is returned. When
del et e_user/ 2 iscalled the Port and Dir options are mandatory.

get _user (User Nanme, Options) -> {ok, #httpd_ user} |{error, Reason}

Ericsson AB. All Rights Reserved.: inets | 69

mod_auth

get _user(UserName, Port, Dir) -> {ok, #httpd user} | {error, Reason}
get _user(User Name, Address, Port, Dir) -> {ok, #httpd user} | {error, Reason}

Types.
User Name = string()
Options=[Option]
Option = {port,Port} | {addr ,Address} | {dir,Directory} | {authPasswor d,AuthPasswor d}
Port = integer ()
Address={A,B,C,D} | string() | undefined
Dir =string()
AuthPassword = string()
Reason = term()
get _user/2, get_user/3 andget_user/ 4 retunsahtt pd_user record containing the userdata for a

specific user. If the user cannot be found, { error, Reason} isreturned. When get _user/ 2 iscalled the Port
and Dir options are mandatory.

list_users(Options) -> {ok, Users} | {error, Reason} <nane>l|ist_users(Port,
Dir) -> {ok, Users} | {error, Reason}
list_users(Address, Port, Dir) -> {ok, Users} | {error, Reason}

Types:
Options = [Option]
Option = {port,Port} | {addr,Address} | {dir,Directory} | {authPassword,AuthPassword}
Port = integer ()
Address={A,B,C,D} | string() | undefined
Dir = string()
Users=list()
AuthPassword = string()
Reason = atom()

list _users/1, list_users/2andlist_users/3returnsalist of usersin the user database for a specific
Port/Di r.Whenlist_users/1iscaledthe Port and Dir options are mandatory.

add_gr oup_menber (G oupNane, UserNanme, Options) -> true | {error, Reason}
add_gr oup_nmenber (G oupNane, UserNanme, Port, Dir) -> true | {error, Reason}
add_gr oup_menber (G oupNane, User Nane, Address, Port, Dir) -> true | {error,
Reason}

Types:
GroupName = string()
User Name = string()
Options = [Option]
Option = {port,Port} | {addr,Address} | {dir,Directory} | {authPassword,AuthPassword}
Port = integer ()
Address={A,B,C,D} | string() | undefined
Dir = string()
AuthPassword = string()
Reason =term()

70 | Ericsson AB. All Rights Reserved.: inets

mod_auth

add_group_nenber/ 3, add_group_nenber/ 4 andadd_gr oup_nenber/ 5 addsauser to agroup. If the
group does not exigt, it is created and the user is added to the group. Upon successful operation, this function returns
true. Whenadd_gr oup_nenber s/ 3 iscalled the Port and Dir options are mandatory.

del et e_gr oup_nenber (G oupNane, User Name, Options) -> true | {error, Reason}
del et e_gr oup_nenber (G oupNane, UserNanme, Port, Dir) -> true | {error, Reason}
del et e_group_nenber (G oupNane, User Nane, Address, Port, Dir) -> true |
{error, Reason}

Types:
GroupName = string()
UserName = string()
Options=[Option]
Option = {port,Port} | {addr ,Address} | {dir,Directory} | {authPasswor d,AuthPasswor d}
Port = integer ()
Address={A,B,C,D} | string() | undefined
Dir = string()
AuthPassword = string()
Reason =term()
del ete_group_nenber/3, del ete_group _nenber/4 anddel et e_gr oup_nenber/ 5 deletes auser

from a group. If the group or the user does not exist, this function returns an error, otherwise it returnst r ue. When
del et e_group_nenber/ 3 iscaled the Port and Dir options are mandatory.

list_group_nenbers(G oupNane, Options) -> {ok, Users} | {error, Reason}
list_group_nenbers(GoupNanme, Port, Dir) -> {ok, Users} | {error, Reason}
list_group_nenbers(G oupNane, Address, Port, Dir) -> {ok, Users} | {error,
Reason}

Types.
GroupName = string()
Options=[Option]
Option = {port,Port} | {addr ,Address} | {dir,Directory} | {authPasswor d,AuthPasswor d}
Port = integer()
Address={A,B,C,D} | string() | undefined
Dir =string()
Users=list()
AuthPassword = string()
Reason =term()
list _group_nenbers/2, list _group_nenbers/3andlist_group_nenbers/ 4 lists the members

of a specified group. If the group does not exist or there is an error, { error, Reason} is returned. When
Iist_group_nenbers/ 2 iscaled the Port and Dir options are mandatory.

list_groups(Options) -> {ok, Goups} | {error, Reason}
list_groups(Port, Dir) -> {ok, Goups} | {error, Reason}
list_groups(Address, Port, Dir) -> {ok, Goups} | {error, Reason}

Types:
Options=[Option]

Ericsson AB. All Rights Reserved.: inets | 71

mod_auth

Option ={port,Port} | {addr ,Address} | {dir,Directory} | {authPasswor d,AuthPasswor d}
Port = integer ()

Address={A,B,C,D} | string() | undefined

Dir = string()

Groups=list()

AuthPassword = string()

Reason =term()

list groups/1, list _groups/2andlist_groups/3 listsal the groups available. If there is an error,
{error, Reason} isreturned. Whenl i st _groups/ 1 iscalled the Port and Dir options are mandatory.

del ete_group(G oupNane, Options) -> true | {error, Reason}
<name>del et e_group(G oupNane, Port, Dir) -> true | {error, Reason}
del et e_group(G oupNane, Address, Port, Dir) -> true | {error, Reason}

Types.
Options=[Option]
Option ={port,Port} | {addr ,Address} | {dir,Directory} | {authPasswor d,AuthPasswor d}
Port = integer ()
Address={A,B,C,D} | string() | undefined
Dir = string()
GroupName = string()
AuthPassword = string()
Reason =term()
del ete_group/ 2, del ete_group/3anddel et e_group/ 4 deletesthe group specified and returnst r ue.

If thereisan error, { error, Reason} isreturned. When del et e_gr oup/ 2 is called the Port and Dir options
are mandatory.

updat e_password(Port, Dir, O dPassword, NewPassword, NewPassword) -> ok |
{error, Reason}

updat e_passwor d(Address, Port, Dir, O dPassword, NewPassword, NewPassword) ->
ok | {error, Reason}

Types.
Port = integer ()
Address={A,B,C,D} | string() | undefined
Dir = string()
GroupName = string()
OldPassword = string()
NewPassword = string()
Reason =term()
updat e_passwor d/ 5 andupdat e_passwor d/ 6 Updates the AuthA ccessPassword for the specified directory.

If NewPassword is equal to "NoPassword" no password is requires to change authorisation data. If NewPassword is
equal to "DummyPassword" no changes can be done without changing the password first.

SEE ALSO
httpd(3), mod_alias(3),

72 | Ericsson AB. All Rights Reserved.: inets

mod_esi

mod_esi

Erlang module

This module defines the API - Erlang Server Interface (ESI). Which is a more efficient way of writing erlang scripts
for your Inets web server than writing them as common CGI scripts.

Exports

deliver(SessionlD, Data) -> ok | {error, Reason}
Types:

Session| D = term()

Data = string() | io_list()

Reason = term()

This function is only intended to be used from functions called by the Erl Scheme interface to deliver parts of the
content to the user.

Sends data from a Erl Scheme script back to the client.

Note:

Note that if any HTTP-header fields should be added by the script they must be in the first call to deliver/2 and
the data in the call must be a string. Do not assume anything about the data type of SessionlD, the SessionlD
must be the value given asinput to the esi call back function that you implemented.

ESI Callback Functions
Exports

Modul e: Function(Sessionl D, Env, Ilnput)-> _
Types:
SessionI D = term()
Env = [EnvironmentDir ectives] ++ Par sedHeader
EnvironmentDirectives = {K ey,Value}
Key = query_string | content_length | server_software | gateway_interface | server_protocol | server_port
| request_method | remote_addr | script_name. <v>Input = string()

The Mbdul e must be found in the code path and export Funct i on with an arity of two. An erl ScriptAlias must also
be set up in the configuration file for the Web server.

If the HTTP request is a post request and a body is sent then content_length will be the length of the posted data. If
get isused query_string will be the data after ? in the url.

ParsedHeader isthe HTTP request as akey value tuple list. The keysin parsed header will be thein lower case.
SessionlD is aidentifier the server usewhen del i ver/ 2 iscalled, do not assume any-thing about the datatype.

Usethis callback function to dynamically generate dynamic web content. when a part of the page is generated send the
data back to the client through del i ver/ 2. Note that the first chunk of data sent to the client must at least contain

Ericsson AB. All Rights Reserved.: inets | 73

mod_esi

all HTTP header fields that the response will generate. If thefirst chunk not contains End of HTTP header that is” \ r
\n\r\n" the server will assume that no HTTP header fields will be generated.

Modul e: Functi on(Env, Input)-> Response
Types:
Env = [EnvironmentDir ectives] ++ Par sedHeader
EnvironmentDirectives = {Key,Value}

Key = query_string | content_length | server_software | gateway_interface | server_protocol | server_port
| request_method | remote_addr | script_name. <v>Input = string()
Response = string()
This callback format consumes quite much memory since the whole response must be generated before it is

sent to the user. This functions is deprecated and only keept for backwards compatibility. For new development
Modul e: Function/3 should be used.

74 | Ericsson AB. All Rights Reserved.: inets

mod_security

mod_security

Erlang module

Security Audit and Trailing Functionality

Exports

list_auth_users(Port) -> Users | []
l'ist_auth_users(Address, Port) -> Users | []
list_auth_users(Port, Dir) -> Users | []
list_auth_users(Address, Port, Dir) -> Users | []

Types:

Port = integer ()

Address={A,B,C,D} | string() | undefined

Dir =string()

Users=list() = [string()]
list auth users/1,list_auth users/2 and|ist_auth_users/3 returns alist of users that are
currently authenticated. Authentications are stored for SecurityAuthTimeout seconds, and are then discarded.

list_blocked users(Port) -> Users | []

list_blocked users(Address, Port) -> Users | []

list _blocked users(Port, Dir) -> Users | []
list_blocked users(Address, Port, Dir) -> Users | []

Types.

Port = integer ()

Address={A,B,C,D} | string() | undefined

Dir = string()

Users=list() = [string()]
list blocked users/1,list_blocked users/2andlist bl ocked users/ 3returnsalist of users
that are currently blocked from access.

bl ock_user(User, Port, Dir, Seconds) -> true | {error, Reason}
bl ock_user(User, Address, Port, Dir, Seconds) -> true | {error, Reason}

Types:
User = string()
Port = integer ()
Address={A,B,C,D} | string() | undefined
Dir = string()
Seconds = integer () | infinity
Reason = no_such_directory
bl ock_user/ 4 andbl ock_user/ 5 blockstheuser User fromthedirectory Di r for aspecified amount of time.

unbl ock_user (User, Port) -> true | {error, Reason}
unbl ock_user (User, Address, Port) -> true | {error, Reason}

Ericsson AB. All Rights Reserved.: inets | 75

mod_security

unbl ock_user(User, Port, Dir) -> true | {error, Reason}
unbl ock_user (User, Address, Port, Dir) -> true | {error, Reason}

Types.
User =string()
Port = integer ()
Address={A,B,C,D} | string() | undefined
Dir = string()
Reason =term()

unbl ock_user/ 2,unbl ock_user/ 3 andunbl ock_user/ 4 removesthe user User fromthelist of blocked
users for the Port (and Dir) specified.

The SecurityCallbackModule

The SecurityCallbackM oduleisauser written modul e that can receive eventsfrom the mod_security Erlang Webserver
API module. This module only exports one function, event/4, which is described below.

Exports

event (What, Port, Dir, Data) -> ignored
event (What, Address, Port, Dir, Data) -> ignored
Types:
What = atom()
Port = integer ()
Address={A,B,C,D} | string() <v>Dir = string()
What = [Info]
Info ={Name, Value}
event/ 4 or event/ 4 is caled whenever an event occurs in the mod_security Erlang Webserver APl module
(event/ 4 is caled if Address is undefined and event /5 otherwise). The What argument specifies the type of

event that has occurred, and should be one of the following reasons; aut h_f ai | (a failed user authentication),
user _bl ock (auserisbeing blocked from access) or user _unbl ock (auser isbeing removed from the block list).

Note:

Notethat theuser _unbl ock event isnot triggered when a user is removed from the block list explicitly using
theunbl ock _user function.

76 | Ericsson AB. All Rights Reserved.: inets

	inets
	User's Guide
	Introduction
	Purpose
	Prerequisites
	The Service Concept

	FTP Client
	Introduction
	Using the FTP Client API

	HTTP Client
	Introduction
	Configuration
	Using the HTTP Client API

	HTTP server
	Introduction
	Configuration
	Using the HTTP Server API
	Htaccess - User Configurable Authentication.
	Access Files Directives

	Dynamic Web Pages
	The Common Gateway Interface (CGI) Version 1.1, RFC 3875.
	Erlang Server Interface (ESI)
	ERL Scheme
	EVAL Scheme

	Logging
	Server Side Includes
	SERVER-SIDE INCLUDES (SSI) SETUP
	Server-Side Includes (SSI) Format
	Server-Side Includes (SSI) Environment Variables

	The Erlang Web Server API
	API Description

	Inets Web Server Modules
	mod_action - Filetype/Method-Based Script Execution.
	mod_alias - URL Aliasing
	mod_auth - User Authentication
	Mnesia as Authentication Database

	mod_cgi - CGI Scripts
	mod_dir - Directories
	mod_disk_log - Logging Using disk_log.
	mod_esi - Erlang Server Interface
	mod_get - Regular GET Requests
	mod_head - Regular HEAD Requests
	mod_htaccess - User Configurable Access
	mod_include - SSI
	mod_log - Logging Using Text Files.
	mod_range - Requests with Range Headers
	mod_response_control - Requests with If* Headers
	mod_security - Security Filter
	mod_trace - TRACE Request

	Reference Manual
	inets
	services/0
	services_info/0
	service_names/0
	start/0
	start/1
	stop/0
	start/2
	start/3
	stop/2

	ftp
	account/2
	append/2
	append/3
	append_bin/3
	append_chunk/2
	append_chunk_start/2
	append_chunk_end/1
	cd/2
	close/1
	delete/2
	formaterror/1
	lcd/2
	lpwd/1
	ls/1
	ls/2
	mkdir/2
	nlist/1
	nlist/2
	open/1
	open/2
	pwd/1
	pwd/1
	recv/2
	recv/3
	recv_bin/2
	recv_chunk_start/2
	recv_chunk/1
	rename/3
	rmdir/2
	send/2
	send/3
	send_bin/3
	send_chunk/2
	send_chunk_start/2
	send_chunk_end/1
	type/2
	user/3
	user/4
	quote/2

	tftp
	start/1
	read_file/3
	write_file/3
	info/1
	info/1
	info/1
	change_config/2
	change_config/2
	change_config/2
	start/0
	prepare/6
	open/6
	read/1
	write/2
	abort/3
	error_msg/2
	warning_msg/2
	info_msg/2

	httpc
	request/1
	request/2
	request/4
	request/5
	cancel_request/1
	cancel_request/2
	set_options/1
	set_options/2
	stream_next/1
	store_cookie/2
	store_cookie/3
	cookie_header/1
	cookie_header/2
	reset_cookies/0
	reset_cookies/1
	which_cookies/0
	which_cookies/1

	httpd
	info/1
	info/2
	info/2
	info/3
	reload_config/2
	Module:do/1
	Module:load/2
	Module:store/2
	Module:remove/1
	parse_query/1

	httpd_conf
	check_enum/2
	clean/1
	custom_clean/3
	is_directory/1
	is_file/1
	make_integer/1

	httpd_socket
	deliver/3
	peername/2
	resolve/0

	httpd_util
	convert_request_date/1
	create_etag/1
	decode_hex/1
	day/1
	flatlength/1
	hexlist_to_integer/1
	integer_to_hexlist/1
	lookup/2
	lookup/3
	lookup_mime/2
	lookup_mime/3
	lookup_mime_default/2
	lookup_mime_default/3
	message/3
	month/1
	multi_lookup/2
	reason_phrase/1
	rfc1123_date/0
	rfc1123_date/2
	split/3
	split_script_path/1
	split_path/1
	strip/1
	suffix/1

	mod_alias
	default_index/2
	path/3
	real_name/3
	real_script_name/3

	mod_auth
	add_user/2
	add_user/5
	add_user/6
	delete_user/2
	delete_user/3
	delete_user/4
	get_user/2
	get_user/3
	get_user/4
	list_users/1
	list_users/3
	add_group_member/3
	add_group_member/4
	add_group_member/5
	delete_group_member/3
	delete_group_member/4
	delete_group_member/5
	list_group_members/2
	list_group_members/3
	list_group_members/4
	list_groups/1
	list_groups/2
	list_groups/3
	delete_group/2
	delete_group/4
	update_password/5
	update_password/6

	mod_esi
	deliver/2
	Module:Function/3
	Module:Function/2

	mod_security
	list_auth_users/1
	list_auth_users/2
	list_auth_users/2
	list_auth_users/3
	list_blocked_users/1
	list_blocked_users/2
	list_blocked_users/2
	list_blocked_users/3
	block_user/4
	block_user/5
	unblock_user/2
	unblock_user/3
	unblock_user/3
	unblock_user/4
	event/4
	event/5

