Denoise images using Non-Local Means (NLMEANS)ΒΆ

Using the non-local means filter [Coupe2008] you can denoise 3D or 4D images and boost the SNR of your datasets. You can also decide between modeling the noise as Gaussian or Rician (default).

import numpy as np
import nibabel as nib
import matplotlib.pyplot as plt
from time import time
from dipy.denoise.nlmeans import nlmeans
from dipy.denoise.noise_estimate import estimate_sigma
from dipy.data import fetch_sherbrooke_3shell, read_sherbrooke_3shell


fetch_sherbrooke_3shell()
img, gtab = read_sherbrooke_3shell()

data = img.get_data()
affine = img.get_affine()

mask = data[..., 0] > 80

# We select only one volume for the example to run quickly.
data = data[..., 1]

print("vol size", data.shape)

t = time()

In order to call nlmeans first you need to estimate the standard deviation of the noise. We use N=4 since the Sherbrooke dataset was acquired on a 1.5T Siemens scanner with a 4 array head coil.

sigma = estimate_sigma(data, N=4)
den = nlmeans(data, sigma=sigma, mask=mask)

print("total time", time() - t)
print("vol size", den.shape)

axial_middle = data.shape[2] / 2

before = data[:, :, axial_middle].T
after = den[:, :, axial_middle].T
difference = np.abs(after.astype('f8') - before.astype('f8'))
difference[~mask[:, :, axial_middle].T] = 0

fig, ax = plt.subplots(1, 3)
ax[0].imshow(before, cmap='gray', origin='lower')
ax[0].set_title('before')
ax[1].imshow(after, cmap='gray', origin='lower')
ax[1].set_title('after')
ax[2].imshow(difference, cmap='gray', origin='lower')
ax[2].set_title('difference')
for i in range(3):
    ax[i].set_axis_off()

plt.show()
plt.savefig('denoised.png', bbox_inches='tight')
../_images/denoised.png

Showing the middle axial slice without (left) and with (right) NLMEANS denoising.

nib.save(nib.Nifti1Image(den, affine), 'denoised.nii.gz')
[Coupe2008]P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, C. Barillot, “An Optimized Blockwise Non Local Means Denoising Filter for 3D Magnetic Resonance Images”, IEEE Transactions on Medical Imaging, 27(4):425-441, 2008.

Example source code

You can download the full source code of this example. This same script is also included in the dipy source distribution under the doc/examples/ directory.