11 #ifndef EIGEN_ORTHOMETHODS_H 12 #define EIGEN_ORTHOMETHODS_H 27 template<
typename Derived>
28 template<
typename OtherDerived>
29 #ifndef EIGEN_PARSED_BY_DOXYGEN 30 inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
32 inline typename MatrixBase<Derived>::PlainObject
36 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3)
37 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
41 typename internal::nested_eval<Derived,2>::type lhs(derived());
42 typename internal::nested_eval<OtherDerived,2>::type rhs(other.
derived());
43 return typename cross_product_return_type<OtherDerived>::type(
44 numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
45 numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
46 numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))
52 template<
int Arch,
typename VectorLhs,
typename VectorRhs,
53 typename Scalar =
typename VectorLhs::Scalar,
54 bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&
PacketAccessBit)>
56 static inline typename internal::plain_matrix_type<VectorLhs>::type
57 run(
const VectorLhs& lhs,
const VectorRhs& rhs)
59 return typename internal::plain_matrix_type<VectorLhs>::type(
60 numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
61 numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
62 numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)),
79 template<
typename Derived>
80 template<
typename OtherDerived>
81 inline typename MatrixBase<Derived>::PlainObject
84 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4)
85 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4)
87 typedef typename internal::nested_eval<Derived,2>::type DerivedNested;
88 typedef typename internal::nested_eval<OtherDerived,2>::type OtherDerivedNested;
89 DerivedNested lhs(derived());
90 OtherDerivedNested rhs(other.
derived());
92 return internal::cross3_impl<Architecture::Target,
93 typename internal::remove_all<DerivedNested>::type,
94 typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs);
106 template<
typename ExpressionType,
int Direction>
107 template<
typename OtherDerived>
108 const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType
111 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
112 EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
113 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
115 typename internal::nested_eval<ExpressionType,2>::type mat(_expression());
116 typename internal::nested_eval<OtherDerived,2>::type vec(other.
derived());
118 CrossReturnType res(_expression().rows(),_expression().cols());
121 eigen_assert(CrossReturnType::RowsAtCompileTime==3 &&
"the matrix must have exactly 3 rows");
122 res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate();
123 res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate();
124 res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate();
128 eigen_assert(CrossReturnType::ColsAtCompileTime==3 &&
"the matrix must have exactly 3 columns");
129 res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate();
130 res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate();
131 res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate();
138 template<
typename Derived,
int Size = Derived::SizeAtCompileTime>
139 struct unitOrthogonal_selector
141 typedef typename plain_matrix_type<Derived>::type VectorType;
142 typedef typename traits<Derived>::Scalar Scalar;
146 static inline VectorType run(
const Derived& src)
148 VectorType perp = VectorType::Zero(src.size());
151 src.cwiseAbs().maxCoeff(&maxi);
154 RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm();
155 perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm;
156 perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm;
162 template<
typename Derived>
163 struct unitOrthogonal_selector<Derived,3>
165 typedef typename plain_matrix_type<Derived>::type VectorType;
166 typedef typename traits<Derived>::Scalar Scalar;
169 static inline VectorType run(
const Derived& src)
179 if((!isMuchSmallerThan(src.x(), src.z()))
180 || (!isMuchSmallerThan(src.y(), src.z())))
182 RealScalar invnm = RealScalar(1)/src.template head<2>().norm();
183 perp.coeffRef(0) = -numext::conj(src.y())*invnm;
184 perp.coeffRef(1) = numext::conj(src.x())*invnm;
185 perp.coeffRef(2) = 0;
193 RealScalar invnm = RealScalar(1)/src.template tail<2>().norm();
194 perp.coeffRef(0) = 0;
195 perp.coeffRef(1) = -numext::conj(src.z())*invnm;
196 perp.coeffRef(2) = numext::conj(src.y())*invnm;
203 template<
typename Derived>
204 struct unitOrthogonal_selector<Derived,2>
206 typedef typename plain_matrix_type<Derived>::type VectorType;
208 static inline VectorType run(
const Derived& src)
209 {
return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); }
223 template<
typename Derived>
224 typename MatrixBase<Derived>::PlainObject
227 EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
228 return internal::unitOrthogonal_selector<Derived>::run(derived());
233 #endif // EIGEN_ORTHOMETHODS_H PlainObject unitOrthogonal(void) const
Definition: OrthoMethods.h:225
internal::traits< Derived >::Scalar Scalar
Definition: DenseBase.h:66
Definition: Constants.h:265
Eigen::Index Index
Definition: VectorwiseOp.h:162
Namespace containing all symbols from the Eigen library.
Definition: Core:271
Holds information about the various numeric (i.e. scalar) types allowed by Eigen. ...
Definition: NumTraits.h:167
Derived & derived()
Definition: EigenBase.h:44
const unsigned int PacketAccessBit
Definition: Constants.h:89
PlainObject cross3(const MatrixBase< OtherDerived > &other) const
Definition: OrthoMethods.h:82
const CrossReturnType cross(const MatrixBase< OtherDerived > &other) const
Definition: OrthoMethods.h:109
Definition: Eigen_Colamd.h:50
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:178
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:48
PlainObject cross(const MatrixBase< OtherDerived > &other) const
Definition: OrthoMethods.h:34