47 #ifdef CHECK_MEMORY_LEAKS 49 #endif // CHECK_MEMORY_LEAKS 51 #define MIN_GREEN_TIME 5 57 const std::vector<NBNode*>& junctions,
SUMOTime offset,
60 myHaveSinglePhase(false) {
106 for (
int e1l = 0; e1l < e1->
getNumLanes(); e1l++) {
108 for (
int e2l = 0; e2l < e2->
getNumLanes(); e2l++) {
110 for (std::vector<NBEdge::Connection>::iterator e1c = approached1.begin(); e1c != approached1.end(); ++e1c) {
114 for (std::vector<NBEdge::Connection>::iterator e2c = approached2.begin(); e2c != approached2.end(); ++e2c) {
118 if (!
forbids(e1, (*e1c).toEdge, e2, (*e2c).toEdge,
true)) {
130 std::pair<NBEdge*, NBEdge*>
132 std::pair<NBEdge*, NBEdge*> bestPair(static_cast<NBEdge*>(0), static_cast<NBEdge*>(0));
134 for (EdgeVector::const_iterator i = edges.begin(); i != edges.end(); ++i) {
135 for (EdgeVector::const_iterator j = i + 1; j != edges.end(); ++j) {
137 if (value > bestValue) {
139 bestPair = std::pair<NBEdge*, NBEdge*>(*i, *j);
140 }
else if (value == bestValue) {
142 const SUMOReal oa =
GeomHelper::getMinAngleDiff(bestPair.first->getAngleAtNode(bestPair.first->getToNode()), bestPair.second->getAngleAtNode(bestPair.second->getToNode()));
144 if (bestPair.first->getID() < (*i)->getID()) {
145 bestPair = std::pair<NBEdge*, NBEdge*>(*i, *j);
147 }
else if (oa < ca) {
148 bestPair = std::pair<NBEdge*, NBEdge*>(*i, *j);
157 std::pair<NBEdge*, NBEdge*>
159 if (incoming.size() == 1) {
161 std::pair<NBEdge*, NBEdge*> ret(*incoming.begin(),
static_cast<NBEdge*
>(0));
169 used.push_back(*incoming.begin());
172 for (EdgeVector::iterator i = incoming.begin() + 1; i != incoming.end() && prio ==
getToPrio(*i); ++i) {
176 if (used.size() < 2) {
180 incoming.erase(find(incoming.begin(), incoming.end(), ret.first));
181 incoming.erase(find(incoming.begin(), incoming.end(), ret.second));
199 std::vector<bool> isTurnaround;
200 std::vector<int> fromLanes;
203 for (
int i1 = 0; i1 < (int)incoming.size(); i1++) {
204 int noLanes = incoming[i1]->getNumLanes();
205 noLanesAll += noLanes;
206 for (
int i2 = 0; i2 < noLanes; i2++) {
207 NBEdge* fromEdge = incoming[i1];
209 noLinksAll += (int) approached.size();
210 for (
int i3 = 0; i3 < (int)approached.size(); i3++) {
211 if (!fromEdge->
mayBeTLSControlled(i2, approached[i3].toEdge, approached[i3].toLane)) {
215 assert(i3 < (
int)approached.size());
216 NBEdge* toEdge = approached[i3].toEdge;
217 fromEdges.push_back(fromEdge);
218 fromLanes.push_back((
int)i2);
219 toEdges.push_back(toEdge);
223 isTurnaround.push_back(
true);
229 std::vector<NBNode::Crossing> crossings;
231 const std::vector<NBNode::Crossing>& c = (*i)->getCrossings();
234 (*i)->setCrossingTLIndices(noLinksAll);
236 copy(c.begin(), c.end(), std::back_inserter(crossings));
237 noLinksAll += (int)c.size();
245 std::vector<int> greenPhases;
246 std::vector<bool> hadGreenMajor(noLinksAll,
false);
247 while (toProc.size() > 0) {
248 std::pair<NBEdge*, NBEdge*> chosen;
249 if (incoming.size() == 2) {
252 SUMOReal angle = fabs(
NBHelpers::relAngle(incoming[0]->getAngleAtNode(incoming[0]->getToNode()), incoming[1]->getAngleAtNode(incoming[1]->getToNode())));
255 chosen = std::pair<NBEdge*, NBEdge*>(toProc[0],
static_cast<NBEdge*
>(0));
256 toProc.erase(toProc.begin());
264 std::string state((
int) noLinksAll,
'r');
267 for (
int i1 = 0; i1 < (int) incoming.size(); ++i1) {
268 NBEdge* fromEdge = incoming[i1];
269 const bool inChosen = fromEdge == chosen.first || fromEdge == chosen.second;
271 for (
int i2 = 0; i2 < numLanes; i2++) {
273 for (
int i3 = 0; i3 < (int)approached.size(); ++i3) {
274 if (!fromEdge->
mayBeTLSControlled(i2, approached[i3].toEdge, approached[i3].toLane)) {
289 for (
int i1 = 0; i1 < pos; ++i1) {
290 if (state[i1] ==
'G') {
295 if (state[i2] ==
'G' && !isTurnaround[i2] &&
296 (
forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1],
true) ||
forbids(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2],
true))) {
300 if (!isForbidden && !
hasCrossing(fromEdges[i1], toEdges[i1], crossings)) {
306 bool haveForbiddenLeftMover =
false;
307 std::vector<bool> rightTurnConflicts(pos,
false);
308 state =
correctConflicting(state, fromEdges, toEdges, isTurnaround, fromLanes, hadGreenMajor, haveForbiddenLeftMover, rightTurnConflicts);
309 for (
int i1 = 0; i1 < pos; ++i1) {
310 if (state[i1] ==
'G') {
311 hadGreenMajor[i1] =
true;
315 const std::string vehicleState = state;
316 greenPhases.push_back((
int)logic->
getPhases().size());
319 for (
int i1 = pos; i1 < pos + (int)crossings.size(); ++i1) {
322 const bool buildLeftGreenPhase = haveForbiddenLeftMover && !
myHaveSinglePhase && leftTurnTime > 0;
323 if (brakingTime > 0) {
325 for (
int i1 = 0; i1 < pos; ++i1) {
326 if (state[i1] !=
'G' && state[i1] !=
'g') {
329 if ((vehicleState[i1] >=
'a' && vehicleState[i1] <=
'z') && buildLeftGreenPhase && !rightTurnConflicts[i1]) {
335 logic->
addStep(brakingTime, state);
338 if (buildLeftGreenPhase) {
340 for (
int i1 = 0; i1 < pos; ++i1) {
341 if (state[i1] ==
'Y' || state[i1] ==
'y') {
345 if (state[i1] ==
'g') {
350 state =
correctConflicting(state, fromEdges, toEdges, isTurnaround, fromLanes, hadGreenMajor, haveForbiddenLeftMover, rightTurnConflicts);
353 logic->
addStep(leftTurnTime, state);
356 if (brakingTime > 0) {
357 for (
int i1 = 0; i1 < pos; ++i1) {
358 if (state[i1] !=
'G' && state[i1] !=
'g') {
364 logic->
addStep(brakingTime, state);
369 if (crossings.size() > 0) {
379 for (std::vector<int>::const_iterator it = greenPhases.begin(); it != greenPhases.end(); ++it) {
381 greenPhaseTime += dur;
382 minGreenDuration =
MIN2(minGreenDuration, dur);
384 const int patchSeconds = (int)(
STEPS2TIME(cycleTime - totalDuration) / greenPhases.size());
385 const int patchSecondsRest = (int)(
STEPS2TIME(cycleTime - totalDuration)) - patchSeconds * (
int)greenPhases.size();
389 || greenPhases.size() == 0) {
395 for (std::vector<int>::const_iterator it = greenPhases.begin(); it != greenPhases.end(); ++it) {
398 if (greenPhases.size() > 0) {
408 if (totalDuration > 0) {
409 if (totalDuration > 3 * (greenTime + 2 * brakingTime + leftTurnTime)) {
424 for (std::vector<NBNode::Crossing>::const_iterator it = crossings.begin(); it != crossings.end(); it++) {
428 for (EdgeVector::const_iterator it_e = cross.
edges.begin(); it_e != cross.
edges.end(); ++it_e) {
429 const NBEdge* edge = *it_e;
430 if (edge == from || edge == to) {
442 std::string state,
const std::vector<NBNode::Crossing>& crossings,
const EdgeVector& fromEdges,
const EdgeVector& toEdges) {
445 const std::string orig = state;
449 logic->
addStep(greenTime, state);
451 const SUMOTime pedTime = greenTime - pedClearingTime;
452 if (pedTime >= minPedTime) {
454 const int pedStates = (int)crossings.size();
455 logic->
addStep(pedTime, state);
456 state = state.substr(0, state.size() - pedStates) + std::string(pedStates,
'r');
457 logic->
addStep(pedClearingTime, state);
461 logic->
addStep(greenTime, state);
470 std::string result = state;
471 const int pos = (int)(state.size() - crossings.size());
472 for (
int ic = 0; ic < (int)crossings.size(); ++ic) {
473 const int i1 = pos + ic;
478 if (fromEdges[i2] != 0 && toEdges[i2] != 0 && fromEdges[i2]->getToNode() == cross.
node) {
479 for (EdgeVector::const_iterator it = cross.
edges.begin(); it != cross.
edges.end(); ++it) {
482 if (state[i2] !=
'r' && (edge == fromEdges[i2] ||
498 for (
int i1 = 0; i1 < pos; ++i1) {
499 if (result[i1] ==
'G') {
500 for (
int ic = 0; ic < (int)crossings.size(); ++ic) {
502 if (fromEdges[i1] != 0 && toEdges[i1] != 0 && fromEdges[i1]->getToNode() == crossing.
node) {
503 const int i2 = pos + ic;
570 (*i)->removeTrafficLight(&dummy);
581 for (EdgeVector::iterator it = result.begin(); it != result.end();) {
582 if ((*it)->getConnections().size() == 0 || (*it)->isInnerEdge()) {
583 it = result.erase(it);
597 for (
int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
598 if (state[i1] ==
'G') {
601 bool followsChosen =
false;
602 for (
int i2 = 0; i2 < (int)fromEdges.size() && !followsChosen; ++i2) {
603 if (state[i2] ==
'G' && fromEdges[i1] == toEdges[i2]) {
604 followsChosen =
true;
619 const std::vector<bool>& isTurnaround,
620 const std::vector<int>& fromLanes,
621 const std::vector<bool>& hadGreenMajor,
622 bool& haveForbiddenLeftMover,
623 std::vector<bool>& rightTurnConflicts) {
625 for (
int i1 = 0; i1 < (int)fromEdges.size(); ++i1) {
626 if (state[i1] ==
'G') {
627 for (
int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
628 if ((state[i2] ==
'G' || state[i2] ==
'g')) {
630 fromEdges[i1], toEdges[i1], fromLanes[i1], fromEdges[i2], toEdges[i2], fromLanes[i2])) {
631 rightTurnConflicts[i1] =
true;
633 if (
forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1],
true, controlledWithin) || rightTurnConflicts[i1]) {
636 if (!isTurnaround[i1] && !hadGreenMajor[i1]) {
637 haveForbiddenLeftMover =
true;
643 if (state[i1] ==
'r') {
645 fromEdges[i1]->getToNode()->getDirection(fromEdges[i1], toEdges[i1]) ==
LINKDIR_RIGHT) {
648 for (
int i2 = 0; i2 < (int)fromEdges.size(); ++i2) {
649 if (state[i2] ==
'G' && !isTurnaround[i2] &&
650 (
forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1],
true) ||
forbids(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2],
true))) {
663 const std::vector<NBNode::Crossing>& crossings,
const EdgeVector& fromEdges,
const EdgeVector& toEdges) {
664 const int vehLinks = noLinksAll - (int)crossings.size();
665 std::vector<bool> foundGreen(crossings.size(),
false);
666 const std::vector<NBTrafficLightLogic::PhaseDefinition>& phases = logic->
getPhases();
667 for (
int i = 0; i < (int)phases.size(); ++i) {
668 const std::string state = phases[i].state;
669 for (
int j = 0; j < (int)crossings.size(); ++j) {
672 foundGreen[j] =
true;
676 for (
int j = 0; j < (int)foundGreen.size(); ++j) {
677 if (!foundGreen[j]) {
680 if (phases.size() > 0) {
681 bool needYellowPhase =
false;
682 std::string state = phases.back().state;
683 for (
int i1 = 0; i1 < vehLinks; ++i1) {
684 if (state[i1] ==
'G' || state[i1] ==
'g') {
686 needYellowPhase =
true;
690 if (needYellowPhase && brakingTime > 0) {
691 logic->
addStep(brakingTime, state);
bool mayBeTLSControlled(int fromLane, NBEdge *toEdge, int toLane) const
return true if certain connection must be controlled by TLS
static std::string patchStateForCrossings(const std::string &state, const std::vector< NBNode::Crossing > &crossings, const EdgeVector &fromEdges, const EdgeVector &toEdges)
compute phase state in regard to pedestrian crossings
The link is a partial left direction.
The link has green light, may pass.
bool setControllingTLInformation(const NBConnection &c, const std::string &tlID)
Returns if the link could be set as to be controlled.
void setTLControllingInformation() const
Informs edges about being controlled by a tls.
TrafficLightType myType
The algorithm type for the traffic light.
int getInt(const std::string &name) const
Returns the int-value of the named option (only for Option_Integer)
void collectAllLinks()
helper method for use in NBOwnTLDef and NBLoadedSUMOTLDef
static const std::string DummyID
id for temporary definitions
void closeBuilding()
closes the building process
RightOnRedConflicts myRightOnRedConflicts
A SUMO-compliant built logic for a traffic light.
int getJunctionPriority(const NBNode *const node) const
Returns the junction priority (normalised for the node currently build)
The link has green light, has to brake.
std::string correctConflicting(std::string state, const EdgeVector &fromEdges, const EdgeVector &toEdges, const std::vector< bool > &isTurnaround, const std::vector< int > &fromLanes, const std::vector< bool > &hadGreenMajor, bool &haveForbiddenLeftMover, std::vector< bool > &rightTurnConflicts)
change 'G' to 'g' for conflicting connections
The representation of a single edge during network building.
std::string allowFollowersOfChosen(std::string state, const EdgeVector &fromEdges, const EdgeVector &toEdges)
allow connections that follow on of the chosen edges
TrafficLightType getType() const
get the algorithm type (static etc..)
const std::vector< PhaseDefinition > & getPhases() const
Returns the phases.
void collectNodes()
Collects the nodes participating in this traffic light.
std::string time2string(SUMOTime t)
The base class for traffic light logic definitions.
NBEdge * getTurnDestination(bool possibleDestination=false) const
NBEdge * getFrom() const
returns the from-edge (start of the connection)
static bool hasCrossing(const NBEdge *from, const NBEdge *to, const std::vector< NBNode::Crossing > &crossings)
compute whether the given connection is crossed by pedestrians
bool isForbidden(SVCPermissions permissions)
Returns whether an edge with the given permission is a forbidden edge.
bool getBool(const std::string &name) const
Returns the boolean-value of the named option (only for Option_Bool)
const std::string & getID() const
Returns the id.
static EdgeVector getConnectedOuterEdges(const EdgeVector &incoming)
get edges that have connections
SUMOTime myOffset
The offset in the program.
The link is a (hard) left direction.
#define WRITE_WARNING(msg)
std::pair< NBEdge *, NBEdge * > getBestPair(EdgeVector &incoming)
Returns the combination of two edges from the given which has most unblocked streams.
static OptionsCont & getOptions()
Retrieves the options.
static bool rightTurnConflict(const NBEdge *from, const NBEdge *to, int fromLane, const NBEdge *prohibitorFrom, const NBEdge *prohibitorTo, int prohibitorFromLane, bool lefthand=false)
return whether the given laneToLane connection is a right turn which must yield to a bicycle crossing...
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)...
The link is a straight direction.
std::vector< Connection > getConnectionsFromLane(int lane) const
Returns connections from a given lane.
virtual void collectEdges()
Build the list of participating edges.
int getNumLanes() const
Returns the number of lanes.
void replaceRemoved(NBEdge *removed, int removedLane, NBEdge *by, int byLane)
Replaces a removed edge/lane.
std::pair< NBEdge *, NBEdge * > getBestCombination(const EdgeVector &edges)
Returns the combination of two edges from the given which has most unblocked streams.
bool myHaveSinglePhase
Whether left-mover should not have an additional phase.
LinkState
The right-of-way state of a link between two lanes used when constructing a NBTrafficLightLogic, in MSLink and GNEInternalLane.
NBOwnTLDef(const std::string &id, const std::vector< NBNode *> &junctions, SUMOTime offset, TrafficLightType type)
Constructor.
The link is a (hard) right direction.
static const std::string DefaultProgramID
static std::string addPedestrianPhases(NBTrafficLightLogic *logic, SUMOTime greenTime, std::string state, const std::vector< NBNode::Crossing > &crossings, const EdgeVector &fromEdges, const EdgeVector &toEdges)
add 1 or 2 phases depending on the presence of pedestrian crossings
const std::string & getProgramID() const
Returns the ProgramID.
The link is a partial right direction.
SUMOReal computeUnblockedWeightedStreamNumber(const NBEdge *const e1, const NBEdge *const e2)
Returns how many streams outgoing from the edges can pass the junction without being blocked...
SUMOTime getDuration() const
Returns the duration of the complete cycle.
LinkDirection getDirection(const NBEdge *const incoming, const NBEdge *const outgoing, bool leftHand=false) const
Returns the representation of the described stream's direction.
const EdgeVector & getIncomingEdges() const
Returns the list of incoming edges (must be build first)
bool myRightOnRedConflictsReady
static void addPedestrianScramble(NBTrafficLightLogic *logic, int noLinksAll, SUMOTime greenTime, SUMOTime yellowTime, const std::vector< NBNode::Crossing > &crossings, const EdgeVector &fromEdges, const EdgeVector &toEdges)
add an additional pedestrian phase if there are crossings that did not get green yet ...
NBTrafficLightLogic * myCompute(int brakingTimeSeconds)
Computes the traffic light logic finally in dependence to the type.
NBTrafficLightLogic * computeLogicAndConts(int brakingTimeSeconds, bool onlyConts=false)
helper function for myCompute
void collectLinks()
Collects the links participating in this traffic light.
SUMOReal getDirectionalWeight(LinkDirection dir)
Returns the weight of a stream given its direction.
bool forbids(const NBEdge *const possProhibitorFrom, const NBEdge *const possProhibitorTo, const NBEdge *const possProhibitedFrom, const NBEdge *const possProhibitedTo, bool regardNonSignalisedLowerPriority, bool sameNodeOnly=false) const
Returns the information whether "prohibited" flow must let "prohibitor" flow pass.
bool myNeedsContRelationReady
std::vector< NBEdge * > EdgeVector
static SUMOReal getMinAngleDiff(SUMOReal angle1, SUMOReal angle2)
Returns the minimum distance (clockwise/counter-clockwise) between both angles.
const NBNode * node
The parent node of this crossing.
NeedsContRelation myNeedsContRelation
void setPhaseDuration(int phaseIndex, SUMOTime duration)
Modifies the duration for an existing phase (used by NETEDIT)
bool isTurningDirectionAt(const NBEdge *const edge) const
Returns whether the given edge is the opposite direction to this edge.
EdgeVector edges
The edges being crossed.
Represents a single node (junction) during network building.
A definition of a pedestrian crossing.
bool mustBrakeForCrossing(const NBEdge *const from, const NBEdge *const to, const Crossing &crossing) const
Returns the information whether the described flow must brake for the given crossing.
static SUMOReal relAngle(SUMOReal angle1, SUMOReal angle2)
data structure for caching needsCont information
std::vector< NBNode * > myControlledNodes
The container with participating nodes.
NBNode * getFromNode() const
Returns the origin node of the edge.
A traffic light logics which must be computed (only nodes/edges are given)
void addStep(SUMOTime duration, const std::string &state, int index=-1)
Adds a phase to the logic.
void initNeedsContRelation() const
Sorts edges by their priority within the node they end at.
void setParticipantsInformation()
Builds the list of participating nodes/edges/links.
NBConnectionVector myControlledLinks
The list of controlled links.
NBNode * getToNode() const
Returns the destination node of the edge.
int getToPrio(const NBEdge *const e)
Returns this edge's priority at the node it ends at.
void remapRemoved(NBEdge *removed, const EdgeVector &incoming, const EdgeVector &outgoing)
Replaces occurences of the removed edge in incoming/outgoing edges of all definitions.