1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
// Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use prelude::v1::*;
use os::unix::prelude::*;

use collections::hash_map::{HashMap, Entry};
use env;
use ffi::{OsString, OsStr, CString, CStr};
use fmt;
use io::{self, Error, ErrorKind};
use libc::{self, pid_t, c_int, gid_t, uid_t, c_char};
use mem;
use ptr;
use sys::fd::FileDesc;
use sys::fs::{File, OpenOptions};
use sys::pipe::{self, AnonPipe};
use sys::{self, cvt, cvt_r};

////////////////////////////////////////////////////////////////////////////////
// Command
////////////////////////////////////////////////////////////////////////////////

pub struct Command {
    // Currently we try hard to ensure that the call to `.exec()` doesn't
    // actually allocate any memory. While many platforms try to ensure that
    // memory allocation works after a fork in a multithreaded process, it's
    // been observed to be buggy and somewhat unreliable, so we do our best to
    // just not do it at all!
    //
    // Along those lines, the `argv` and `envp` raw pointers here are exactly
    // what's gonna get passed to `execvp`. The `argv` array starts with the
    // `program` and ends with a NULL, and the `envp` pointer, if present, is
    // also null-terminated.
    //
    // Right now we don't support removing arguments, so there's no much fancy
    // support there, but we support adding and removing environment variables,
    // so a side table is used to track where in the `envp` array each key is
    // located. Whenever we add a key we update it in place if it's already
    // present, and whenever we remove a key we update the locations of all
    // other keys.
    program: CString,
    args: Vec<CString>,
    env: Option<HashMap<OsString, (usize, CString)>>,
    argv: Vec<*const c_char>,
    envp: Option<Vec<*const c_char>>,

    cwd: Option<CString>,
    uid: Option<uid_t>,
    gid: Option<gid_t>,
    session_leader: bool,
    saw_nul: bool,
    closures: Vec<Box<FnMut() -> io::Result<()> + Send + Sync>>,
    stdin: Option<Stdio>,
    stdout: Option<Stdio>,
    stderr: Option<Stdio>,
}

// passed back to std::process with the pipes connected to the child, if any
// were requested
pub struct StdioPipes {
    pub stdin: Option<AnonPipe>,
    pub stdout: Option<AnonPipe>,
    pub stderr: Option<AnonPipe>,
}

// passed to do_exec() with configuration of what the child stdio should look
// like
struct ChildPipes {
    stdin: ChildStdio,
    stdout: ChildStdio,
    stderr: ChildStdio,
}

enum ChildStdio {
    Inherit,
    Explicit(c_int),
    Owned(FileDesc),
}

pub enum Stdio {
    Inherit,
    Null,
    MakePipe,
    Fd(FileDesc),
}

impl Command {
    pub fn new(program: &OsStr) -> Command {
        let mut saw_nul = false;
        let program = os2c(program, &mut saw_nul);
        Command {
            argv: vec![program.as_ptr(), 0 as *const _],
            program: program,
            args: Vec::new(),
            env: None,
            envp: None,
            cwd: None,
            uid: None,
            gid: None,
            session_leader: false,
            saw_nul: saw_nul,
            closures: Vec::new(),
            stdin: None,
            stdout: None,
            stderr: None,
        }
    }

    pub fn arg(&mut self, arg: &OsStr) {
        // Overwrite the trailing NULL pointer in `argv` and then add a new null
        // pointer.
        let arg = os2c(arg, &mut self.saw_nul);
        self.argv[self.args.len() + 1] = arg.as_ptr();
        self.argv.push(0 as *const _);

        // Also make sure we keep track of the owned value to schedule a
        // destructor for this memory.
        self.args.push(arg);
    }

    fn init_env_map(&mut self) -> (&mut HashMap<OsString, (usize, CString)>,
                                   &mut Vec<*const c_char>) {
        if self.env.is_none() {
            let mut map = HashMap::new();
            let mut envp = Vec::new();
            for (k, v) in env::vars_os() {
                let s = pair_to_key(&k, &v, &mut self.saw_nul);
                envp.push(s.as_ptr());
                map.insert(k, (envp.len() - 1, s));
            }
            envp.push(0 as *const _);
            self.env = Some(map);
            self.envp = Some(envp);
        }
        (self.env.as_mut().unwrap(), self.envp.as_mut().unwrap())
    }

    pub fn env(&mut self, key: &OsStr, val: &OsStr) {
        let new_key = pair_to_key(key, val, &mut self.saw_nul);
        let (map, envp) = self.init_env_map();

        // If `key` is already present then we just update `envp` in place
        // (and store the owned value), but if it's not there we override the
        // trailing NULL pointer, add a new NULL pointer, and store where we
        // were located.
        match map.entry(key.to_owned()) {
            Entry::Occupied(mut e) => {
                let (i, ref mut s) = *e.get_mut();
                envp[i] = new_key.as_ptr();
                *s = new_key;
            }
            Entry::Vacant(e) => {
                let len = envp.len();
                envp[len - 1] = new_key.as_ptr();
                envp.push(0 as *const _);
                e.insert((len - 1, new_key));
            }
        }
    }

    pub fn env_remove(&mut self, key: &OsStr) {
        let (map, envp) = self.init_env_map();

        // If we actually ended up removing a key, then we need to update the
        // position of all keys that come after us in `envp` because they're all
        // one element sooner now.
        if let Some((i, _)) = map.remove(key) {
            envp.remove(i);

            for (_, &mut (ref mut j, _)) in map.iter_mut() {
                if *j >= i {
                    *j -= 1;
                }
            }
        }
    }

    pub fn env_clear(&mut self) {
        self.env = Some(HashMap::new());
        self.envp = Some(vec![0 as *const _]);
    }

    pub fn cwd(&mut self, dir: &OsStr) {
        self.cwd = Some(os2c(dir, &mut self.saw_nul));
    }
    pub fn uid(&mut self, id: uid_t) {
        self.uid = Some(id);
    }
    pub fn gid(&mut self, id: gid_t) {
        self.gid = Some(id);
    }
    pub fn session_leader(&mut self, session_leader: bool) {
        self.session_leader = session_leader;
    }

    pub fn before_exec(&mut self,
                       f: Box<FnMut() -> io::Result<()> + Send + Sync>) {
        self.closures.push(f);
    }

    pub fn stdin(&mut self, stdin: Stdio) {
        self.stdin = Some(stdin);
    }
    pub fn stdout(&mut self, stdout: Stdio) {
        self.stdout = Some(stdout);
    }
    pub fn stderr(&mut self, stderr: Stdio) {
        self.stderr = Some(stderr);
    }

    pub fn spawn(&mut self, default: Stdio, needs_stdin: bool)
                 -> io::Result<(Process, StdioPipes)> {
        const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX";

        if self.saw_nul {
            return Err(io::Error::new(ErrorKind::InvalidInput,
                                      "nul byte found in provided data"));
        }

        let (ours, theirs) = self.setup_io(default, needs_stdin)?;
        let (input, output) = sys::pipe::anon_pipe()?;

        let pid = unsafe {
            match cvt(libc::fork())? {
                0 => {
                    drop(input);
                    let err = self.do_exec(theirs);
                    let errno = err.raw_os_error().unwrap_or(libc::EINVAL) as u32;
                    let bytes = [
                        (errno >> 24) as u8,
                        (errno >> 16) as u8,
                        (errno >>  8) as u8,
                        (errno >>  0) as u8,
                        CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1],
                        CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3]
                    ];
                    // pipe I/O up to PIPE_BUF bytes should be atomic, and then
                    // we want to be sure we *don't* run at_exit destructors as
                    // we're being torn down regardless
                    assert!(output.write(&bytes).is_ok());
                    libc::_exit(1)
                }
                n => n,
            }
        };

        let mut p = Process { pid: pid, status: None };
        drop(output);
        let mut bytes = [0; 8];

        // loop to handle EINTR
        loop {
            match input.read(&mut bytes) {
                Ok(0) => return Ok((p, ours)),
                Ok(8) => {
                    assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]),
                            "Validation on the CLOEXEC pipe failed: {:?}", bytes);
                    let errno = combine(&bytes[0.. 4]);
                    assert!(p.wait().is_ok(),
                            "wait() should either return Ok or panic");
                    return Err(Error::from_raw_os_error(errno))
                }
                Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
                Err(e) => {
                    assert!(p.wait().is_ok(),
                            "wait() should either return Ok or panic");
                    panic!("the CLOEXEC pipe failed: {:?}", e)
                },
                Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic
                    assert!(p.wait().is_ok(),
                            "wait() should either return Ok or panic");
                    panic!("short read on the CLOEXEC pipe")
                }
            }
        }

        fn combine(arr: &[u8]) -> i32 {
            let a = arr[0] as u32;
            let b = arr[1] as u32;
            let c = arr[2] as u32;
            let d = arr[3] as u32;

            ((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32
        }
    }

    pub fn exec(&mut self, default: Stdio) -> io::Error {
        if self.saw_nul {
            return io::Error::new(ErrorKind::InvalidInput,
                                  "nul byte found in provided data")
        }

        match self.setup_io(default, true) {
            Ok((_, theirs)) => unsafe { self.do_exec(theirs) },
            Err(e) => e,
        }
    }

    // And at this point we've reached a special time in the life of the
    // child. The child must now be considered hamstrung and unable to
    // do anything other than syscalls really. Consider the following
    // scenario:
    //
    //      1. Thread A of process 1 grabs the malloc() mutex
    //      2. Thread B of process 1 forks(), creating thread C
    //      3. Thread C of process 2 then attempts to malloc()
    //      4. The memory of process 2 is the same as the memory of
    //         process 1, so the mutex is locked.
    //
    // This situation looks a lot like deadlock, right? It turns out
    // that this is what pthread_atfork() takes care of, which is
    // presumably implemented across platforms. The first thing that
    // threads to *before* forking is to do things like grab the malloc
    // mutex, and then after the fork they unlock it.
    //
    // Despite this information, libnative's spawn has been witnessed to
    // deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
    // all collected backtraces point at malloc/free traffic in the
    // child spawned process.
    //
    // For this reason, the block of code below should contain 0
    // invocations of either malloc of free (or their related friends).
    //
    // As an example of not having malloc/free traffic, we don't close
    // this file descriptor by dropping the FileDesc (which contains an
    // allocation). Instead we just close it manually. This will never
    // have the drop glue anyway because this code never returns (the
    // child will either exec() or invoke libc::exit)
    unsafe fn do_exec(&mut self, stdio: ChildPipes) -> io::Error {
        macro_rules! t {
            ($e:expr) => (match $e {
                Ok(e) => e,
                Err(e) => return e,
            })
        }

        if let Some(fd) = stdio.stdin.fd() {
            t!(cvt_r(|| libc::dup2(fd, libc::STDIN_FILENO)));
        }
        if let Some(fd) = stdio.stdout.fd() {
            t!(cvt_r(|| libc::dup2(fd, libc::STDOUT_FILENO)));
        }
        if let Some(fd) = stdio.stderr.fd() {
            t!(cvt_r(|| libc::dup2(fd, libc::STDERR_FILENO)));
        }

        if let Some(u) = self.gid {
            t!(cvt(libc::setgid(u as gid_t)));
        }
        if let Some(u) = self.uid {
            // When dropping privileges from root, the `setgroups` call
            // will remove any extraneous groups. If we don't call this,
            // then even though our uid has dropped, we may still have
            // groups that enable us to do super-user things. This will
            // fail if we aren't root, so don't bother checking the
            // return value, this is just done as an optimistic
            // privilege dropping function.
            let _ = libc::setgroups(0, ptr::null());

            t!(cvt(libc::setuid(u as uid_t)));
        }
        if self.session_leader {
            // Don't check the error of setsid because it fails if we're the
            // process leader already. We just forked so it shouldn't return
            // error, but ignore it anyway.
            let _ = libc::setsid();
        }
        if let Some(ref cwd) = self.cwd {
            t!(cvt(libc::chdir(cwd.as_ptr())));
        }
        if let Some(ref envp) = self.envp {
            *sys::os::environ() = envp.as_ptr();
        }

        // NaCl has no signal support.
        if cfg!(not(target_os = "nacl")) {
            // Reset signal handling so the child process starts in a
            // standardized state. libstd ignores SIGPIPE, and signal-handling
            // libraries often set a mask. Child processes inherit ignored
            // signals and the signal mask from their parent, but most
            // UNIX programs do not reset these things on their own, so we
            // need to clean things up now to avoid confusing the program
            // we're about to run.
            let mut set: libc::sigset_t = mem::uninitialized();
            t!(cvt(libc::sigemptyset(&mut set)));
            t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &set,
                                         ptr::null_mut())));
            let ret = super::signal(libc::SIGPIPE, libc::SIG_DFL);
            if ret == libc::SIG_ERR {
                return io::Error::last_os_error()
            }
        }

        for callback in self.closures.iter_mut() {
            t!(callback());
        }

        libc::execvp(self.argv[0], self.argv.as_ptr());
        io::Error::last_os_error()
    }


    fn setup_io(&self, default: Stdio, needs_stdin: bool)
                -> io::Result<(StdioPipes, ChildPipes)> {
        let null = Stdio::Null;
        let default_stdin = if needs_stdin {&default} else {&null};
        let stdin = self.stdin.as_ref().unwrap_or(default_stdin);
        let stdout = self.stdout.as_ref().unwrap_or(&default);
        let stderr = self.stderr.as_ref().unwrap_or(&default);
        let (their_stdin, our_stdin) = stdin.to_child_stdio(true)?;
        let (their_stdout, our_stdout) = stdout.to_child_stdio(false)?;
        let (their_stderr, our_stderr) = stderr.to_child_stdio(false)?;
        let ours = StdioPipes {
            stdin: our_stdin,
            stdout: our_stdout,
            stderr: our_stderr,
        };
        let theirs = ChildPipes {
            stdin: their_stdin,
            stdout: their_stdout,
            stderr: their_stderr,
        };
        Ok((ours, theirs))
    }
}

fn os2c(s: &OsStr, saw_nul: &mut bool) -> CString {
    CString::new(s.as_bytes()).unwrap_or_else(|_e| {
        *saw_nul = true;
        CString::new("<string-with-nul>").unwrap()
    })
}

impl Stdio {
    fn to_child_stdio(&self, readable: bool)
                      -> io::Result<(ChildStdio, Option<AnonPipe>)> {
        match *self {
            Stdio::Inherit => Ok((ChildStdio::Inherit, None)),

            // Make sure that the source descriptors are not an stdio
            // descriptor, otherwise the order which we set the child's
            // descriptors may blow away a descriptor which we are hoping to
            // save. For example, suppose we want the child's stderr to be the
            // parent's stdout, and the child's stdout to be the parent's
            // stderr. No matter which we dup first, the second will get
            // overwritten prematurely.
            Stdio::Fd(ref fd) => {
                if fd.raw() >= 0 && fd.raw() <= libc::STDERR_FILENO {
                    Ok((ChildStdio::Owned(fd.duplicate()?), None))
                } else {
                    Ok((ChildStdio::Explicit(fd.raw()), None))
                }
            }

            Stdio::MakePipe => {
                let (reader, writer) = pipe::anon_pipe()?;
                let (ours, theirs) = if readable {
                    (writer, reader)
                } else {
                    (reader, writer)
                };
                Ok((ChildStdio::Owned(theirs.into_fd()), Some(ours)))
            }

            Stdio::Null => {
                let mut opts = OpenOptions::new();
                opts.read(readable);
                opts.write(!readable);
                let path = unsafe {
                    CStr::from_ptr("/dev/null\0".as_ptr() as *const _)
                };
                let fd = File::open_c(&path, &opts)?;
                Ok((ChildStdio::Owned(fd.into_fd()), None))
            }
        }
    }
}

impl ChildStdio {
    fn fd(&self) -> Option<c_int> {
        match *self {
            ChildStdio::Inherit => None,
            ChildStdio::Explicit(fd) => Some(fd),
            ChildStdio::Owned(ref fd) => Some(fd.raw()),
        }
    }
}

fn pair_to_key(key: &OsStr, value: &OsStr, saw_nul: &mut bool) -> CString {
    let (key, value) = (key.as_bytes(), value.as_bytes());
    let mut v = Vec::with_capacity(key.len() + value.len() + 1);
    v.extend(key);
    v.push(b'=');
    v.extend(value);
    CString::new(v).unwrap_or_else(|_e| {
        *saw_nul = true;
        CString::new("foo=bar").unwrap()
    })
}

impl fmt::Debug for Command {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self.program)?;
        for arg in &self.args {
            write!(f, " {:?}", arg)?;
        }
        Ok(())
    }
}

////////////////////////////////////////////////////////////////////////////////
// Processes
////////////////////////////////////////////////////////////////////////////////

/// Unix exit statuses
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ExitStatus(c_int);

impl ExitStatus {
    fn exited(&self) -> bool {
        unsafe { libc::WIFEXITED(self.0) }
    }

    pub fn success(&self) -> bool {
        self.code() == Some(0)
    }

    pub fn code(&self) -> Option<i32> {
        if self.exited() {
            Some(unsafe { libc::WEXITSTATUS(self.0) })
        } else {
            None
        }
    }

    pub fn signal(&self) -> Option<i32> {
        if !self.exited() {
            Some(unsafe { libc::WTERMSIG(self.0) })
        } else {
            None
        }
    }
}

impl From<c_int> for ExitStatus {
    fn from(a: c_int) -> ExitStatus {
        ExitStatus(a)
    }
}

impl fmt::Display for ExitStatus {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if let Some(code) = self.code() {
            write!(f, "exit code: {}", code)
        } else {
            let signal = self.signal().unwrap();
            write!(f, "signal: {}", signal)
        }
    }
}

/// The unique id of the process (this should never be negative).
pub struct Process {
    pid: pid_t,
    status: Option<ExitStatus>,
}

impl Process {
    pub fn id(&self) -> u32 {
        self.pid as u32
    }

    pub fn kill(&mut self) -> io::Result<()> {
        // If we've already waited on this process then the pid can be recycled
        // and used for another process, and we probably shouldn't be killing
        // random processes, so just return an error.
        if self.status.is_some() {
            Err(Error::new(ErrorKind::InvalidInput,
                           "invalid argument: can't kill an exited process"))
        } else {
            cvt(unsafe { libc::kill(self.pid, libc::SIGKILL) }).map(|_| ())
        }
    }

    pub fn wait(&mut self) -> io::Result<ExitStatus> {
        if let Some(status) = self.status {
            return Ok(status)
        }
        let mut status = 0 as c_int;
        cvt_r(|| unsafe { libc::waitpid(self.pid, &mut status, 0) })?;
        self.status = Some(ExitStatus(status));
        Ok(ExitStatus(status))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use prelude::v1::*;

    use ffi::OsStr;
    use mem;
    use ptr;
    use libc;
    use sys::cvt;

    macro_rules! t {
        ($e:expr) => {
            match $e {
                Ok(t) => t,
                Err(e) => panic!("received error for `{}`: {}", stringify!($e), e),
            }
        }
    }

    #[cfg(not(target_os = "android"))]
    extern {
        #[cfg_attr(target_os = "netbsd", link_name = "__sigaddset14")]
        fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int;
    }

    #[cfg(target_os = "android")]
    unsafe fn sigaddset(set: *mut libc::sigset_t, signum: libc::c_int) -> libc::c_int {
        use slice;

        let raw = slice::from_raw_parts_mut(set as *mut u8, mem::size_of::<libc::sigset_t>());
        let bit = (signum - 1) as usize;
        raw[bit / 8] |= 1 << (bit % 8);
        return 0;
    }

    // See #14232 for more information, but it appears that signal delivery to a
    // newly spawned process may just be raced in the OSX, so to prevent this
    // test from being flaky we ignore it on OSX.
    #[test]
    #[cfg_attr(target_os = "macos", ignore)]
    #[cfg_attr(target_os = "nacl", ignore)] // no signals on NaCl.
    fn test_process_mask() {
        unsafe {
            // Test to make sure that a signal mask does not get inherited.
            let mut cmd = Command::new(OsStr::new("cat"));

            let mut set: libc::sigset_t = mem::uninitialized();
            let mut old_set: libc::sigset_t = mem::uninitialized();
            t!(cvt(libc::sigemptyset(&mut set)));
            t!(cvt(sigaddset(&mut set, libc::SIGINT)));
            t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &set, &mut old_set)));

            cmd.stdin(Stdio::MakePipe);
            cmd.stdout(Stdio::MakePipe);

            let (mut cat, mut pipes) = t!(cmd.spawn(Stdio::Null, true));
            let stdin_write = pipes.stdin.take().unwrap();
            let stdout_read = pipes.stdout.take().unwrap();

            t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &old_set,
                                         ptr::null_mut())));

            t!(cvt(libc::kill(cat.id() as libc::pid_t, libc::SIGINT)));
            // We need to wait until SIGINT is definitely delivered. The
            // easiest way is to write something to cat, and try to read it
            // back: if SIGINT is unmasked, it'll get delivered when cat is
            // next scheduled.
            let _ = stdin_write.write(b"Hello");
            drop(stdin_write);

            // Either EOF or failure (EPIPE) is okay.
            let mut buf = [0; 5];
            if let Ok(ret) = stdout_read.read(&mut buf) {
                assert!(ret == 0);
            }

            t!(cat.wait());
        }
    }
}