Simplicial Complexes¶
-
class
sage.categories.simplicial_complexes.
SimplicialComplexes
(s=None)¶ Bases:
sage.categories.category_singleton.Category_singleton
The category of abstract simplicial complexes.
An abstract simplicial complex \(A\) is a collection of sets \(X\) such that:
- \(\emptyset \in A\),
- if \(X \subset Y \in A\), then \(X \in A\).
Todo
Implement the category of simplicial complexes considered as
CW complexes
and rename this to the category ofAbstractSimplicialComplexes
with appropriate functors.EXAMPLES:
sage: from sage.categories.simplicial_complexes import SimplicialComplexes sage: C = SimplicialComplexes(); C Category of simplicial complexes
TESTS:
sage: TestSuite(C).run()
-
class
Finite
(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom
Category of finite simplicial complexes.
-
class
SimplicialComplexes.
ParentMethods
¶ -
faces
()¶ Return the faces of
self
.EXAMPLES:
sage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]]) sage: S.faces() {-1: {()}, 0: {(1,), (2,), (3,), (4,), (5,)}, 1: {(1, 2), (1, 3), (1, 4), (2, 5), (3, 4), (4, 5)}, 2: {(1, 3, 4)}}
-
facets
()¶ Return the facets of
self
.EXAMPLES:
sage: S = SimplicialComplex([[1,3,4], [1,2],[2,5],[4,5]]) sage: S.facets() {(1, 2), (1, 3, 4), (2, 5), (4, 5)}
-
-
SimplicialComplexes.
super_categories
()¶ EXAMPLES:
sage: from sage.categories.simplicial_complexes import SimplicialComplexes sage: SimplicialComplexes().super_categories() [Category of sets]