\(p\)-Adic Capped Absolute Elements¶
Elements of \(p\)-Adic Rings with Absolute Precision Cap
AUTHORS:
- David Roe
- Genya Zaytman: documentation
- David Harvey: doctests
-
class
sage.rings.padics.padic_capped_absolute_element.
CAElement
¶ Bases:
sage.rings.padics.padic_capped_absolute_element.pAdicTemplateElement
-
add_bigoh
(absprec)¶ Returns a new element with absolute precision decreased to
absprec
. The precision never increases.INPUT:
absprec
– an integer
OUTPUT:
self
with precision set to the minimum ofself's
precision andprec
EXAMPLES:
sage: R = Zp(7,4,'capped-abs','series'); a = R(8); a.add_bigoh(1) 1 + O(7) sage: k = ZpCA(3,5) sage: a = k(41); a 2 + 3 + 3^2 + 3^3 + O(3^5) sage: a.add_bigoh(7) 2 + 3 + 3^2 + 3^3 + O(3^5) sage: a.add_bigoh(3) 2 + 3 + 3^2 + O(3^3)
-
is_equal_to
(_right, absprec=None)¶ Determines whether the inputs are equal modulo \(\pi^{\mbox{absprec}}\).
INPUT:
right
– a \(p\)-adic element with the same parentabsprec
– an integer, infinity, orNone
EXAMPLES:
sage: R = ZpCA(2, 6) sage: R(13).is_equal_to(R(13)) True sage: R(13).is_equal_to(R(13+2^10)) True sage: R(13).is_equal_to(R(17), 2) True sage: R(13).is_equal_to(R(17), 5) False sage: R(13).is_equal_to(R(13+2^10),absprec=10) Traceback (most recent call last): ... PrecisionError: Elements not known to enough precision
-
is_zero
(absprec=None)¶ Determines whether this element is zero modulo \(\pi^{\mbox{absprec}}\).
If
absprec is None
, returnsTrue
if this element is indistinguishable from zero.INPUT:
absprec
– an integer, infinity, orNone
EXAMPLES:
sage: R = ZpCA(17, 6) sage: R(0).is_zero() True sage: R(17^6).is_zero() True sage: R(17^2).is_zero(absprec=2) True sage: R(17^6).is_zero(absprec=10) Traceback (most recent call last): ... PrecisionError: Not enough precision to determine if element is zero
-
list
(lift_mode='simple', start_val=None)¶ Returns a list of coefficients of \(p\) starting with \(p^0\).
For each lift mode, this function returns a list of \(a_i\) so that this element can be expressed as
\[\pi^v \cdot \sum_{i=0}^\infty a_i \pi^i\]where \(v\) is the valuation of this element when the parent is a field, and \(v = 0\) otherwise.
Different lift modes affect the choice of \(a_i\). When
lift_mode
is'simple'
, the resulting \(a_i\) will be non-negative: if the residue field is \(\mathbb{F}_p\) then they will be integers with \(0 \le a_i < p\); otherwise they will be a list of integers in the same range giving the coefficients of a polynomial in the indeterminant representing the maximal unramified subextension.Choosing
lift_mode
as'smallest'
is similar to'simple'
, but uses a balanced representation \(-p/2 < a_i \le p/2\).Finally, setting
lift_mode = 'teichmuller'
will yield Teichmuller representatives for the \(a_i\): \(a_i^q = a_i\). In this case the \(a_i\) will also be \(p\)-adic elements.INPUT:
lift_mode
–'simple'
,'smallest'
or'teichmuller'
(default'simple'
)start_val
– start at this valuation rather than the default (\(0\) or the valuation of this element). Ifstart_val
is larger than the valuation of this element aValueError
is raised.
Note
Use slice operators to get a particular range.
EXAMPLES:
sage: R = ZpCA(7,6); a = R(12837162817); a 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6) sage: L = a.list(); L [3, 4, 4, 0, 4] sage: sum([L[i] * 7^i for i in range(len(L))]) == a True sage: L = a.list('smallest'); L [3, -3, -2, 1, -3, 1] sage: sum([L[i] * 7^i for i in range(len(L))]) == a True sage: L = a.list('teichmuller'); L [3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + O(7^6), O(7^5), 5 + 2*7 + 3*7^3 + O(7^4), 1 + O(7^3), 3 + 4*7 + O(7^2), 5 + O(7)] sage: sum([L[i] * 7^i for i in range(len(L))]) 3 + 4*7 + 4*7^2 + 4*7^4 + O(7^6)
If the element has positive valuation then the list will start with some zeros:
sage: a = R(7^3 * 17) sage: a.list() [0, 0, 0, 3, 2]
-
precision_absolute
()¶ The absolute precision of this element.
This is the power of the maximal ideal modulo which this element is defined.
EXAMPLES:
sage: R = Zp(7,4,'capped-abs'); a = R(7); a.precision_absolute() 4
-
precision_relative
()¶ The relative precision of this element.
This is the power of the maximal ideal modulo which the unit part of this element is defined.
EXAMPLES:
sage: R = Zp(7,4,'capped-abs'); a = R(7); a.precision_relative() 3
-
teichmuller_list
()¶ Returns a list \([a_0, a_1,\ldots, a_n]\) such that
- \(a_i^q = a_i\), where \(q\) is the cardinality of the residue field,
self
equals \(\sum_{i = 0}^n a_i \pi^i\), and- if \(a_i \ne 0\), the absolute precision of \(a_i\) is
self.precision_relative() - i
EXAMPLES:
sage: R = ZpCA(5,5); R(14).list('teichmuller') #indirect doctest [4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5), 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4), 2 + 5 + 2*5^2 + O(5^3), 1 + O(5^2), 4 + O(5)]
-
unit_part
()¶ Returns the unit part of this element.
EXAMPLES:
sage: R = Zp(17,4,'capped-abs', 'val-unit') sage: a = R(18*17) sage: a.unit_part() 18 + O(17^3) sage: type(a) <type 'sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement'> sage: R(0).unit_part() O(17^0)
-
val_unit
()¶ Returns a 2-tuple, the first element set to the valuation of this element, and the second to the unit part of this element.
For a zero element, the unit part is
O(p^0)
.EXAMPLES:
sage: R = ZpCA(5) sage: a = R(75, 6); b = a - a sage: a.val_unit() (2, 3 + O(5^4)) sage: b.val_unit() (6, O(5^0))
-
-
class
sage.rings.padics.padic_capped_absolute_element.
PowComputer_
¶ Bases:
sage.rings.padics.pow_computer.PowComputer_base
A PowComputer for a capped-absolute padic ring.
-
sage.rings.padics.padic_capped_absolute_element.
make_pAdicCappedAbsoluteElement
(parent, x, absprec)¶ Unpickles a capped absolute element.
EXAMPLES:
sage: from sage.rings.padics.padic_capped_absolute_element import make_pAdicCappedAbsoluteElement sage: R = ZpCA(5) sage: a = make_pAdicCappedAbsoluteElement(R, 17*25, 5); a 2*5^2 + 3*5^3 + O(5^5)
-
class
sage.rings.padics.padic_capped_absolute_element.
pAdicCappedAbsoluteElement
¶ Bases:
sage.rings.padics.padic_capped_absolute_element.CAElement
Constructs new element with given parent and value.
INPUT:
x
– value to coerce into a capped absolute ringabsprec
– maximum number of digits of absolute precisionrelprec
– maximum number of digits of relative precision
EXAMPLES:
sage: R = ZpCA(3, 5) sage: R(2) 2 + O(3^5) sage: R(2, absprec=2) 2 + O(3^2) sage: R(3, relprec=2) 3 + O(3^3) sage: R(Qp(3)(10)) 1 + 3^2 + O(3^5) sage: R(pari(6)) 2*3 + O(3^5) sage: R(pari(1/2)) 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5) sage: R(1/2) 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5) sage: R(mod(-1, 3^7)) 2 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + O(3^5) sage: R(mod(-1, 3^2)) 2 + 2*3 + O(3^2) sage: R(3 + O(3^2)) 3 + O(3^2)
-
lift
()¶ sage: R = ZpCA(3) sage: R(10).lift() 10 sage: R(-1).lift() 3486784400
-
multiplicative_order
()¶ Returns the minimum possible multiplicative order of this element.
OUTPUT: the multiplicative order of self. This is the minimum multiplicative order of all elements of \(\ZZ_p\) lifting
self
to infinite precision.EXAMPLES:
sage: R = ZpCA(7, 6) sage: R(1/3) 5 + 4*7 + 4*7^2 + 4*7^3 + 4*7^4 + 4*7^5 + O(7^6) sage: R(1/3).multiplicative_order() +Infinity sage: R(7).multiplicative_order() +Infinity sage: R(1).multiplicative_order() 1 sage: R(-1).multiplicative_order() 2 sage: R.teichmuller(3).multiplicative_order() 6
-
residue
(absprec=1)¶ Reduces
self
modulo \(p^\mathrm{absprec}\).INPUT:
absprec
- a non-negative integer (default: 1)
OUTPUT:
This element reduced modulo \(p^\mathrm{absprec}\) as an element of \(\ZZ/p^\mathrm{absprec}\ZZ\)
EXAMPLES:
sage: R = Zp(7,4,'capped-abs') sage: a = R(8) sage: a.residue(1) 1 sage: a.residue(2) 8
TESTS:
sage: a.residue(0) 0 sage: a.residue(-1) Traceback (most recent call last): ... ValueError: cannot reduce modulo a negative power of p. sage: a.residue(5) Traceback (most recent call last): ... PrecisionError: not enough precision known in order to compute residue.
-
class
sage.rings.padics.padic_capped_absolute_element.
pAdicCoercion_CA_frac_field
¶ Bases:
sage.rings.morphism.RingHomomorphism_coercion
The canonical inclusion of Zq into its fraction field.
EXAMPLES:
sage: R.<a> = ZqCA(27, implementation='FLINT') sage: K = R.fraction_field() sage: K.coerce_map_from(R) Ring Coercion morphism: From: Unramified Extension of 3-adic Ring with capped absolute precision 20 in a defined by (1 + O(3^20))*x^3 + (O(3^20))*x^2 + (2 + O(3^20))*x + (1 + O(3^20)) To: Unramified Extension of 3-adic Field with capped relative precision 20 in a defined by (1 + O(3^20))*x^3 + (O(3^20))*x^2 + (2 + O(3^20))*x + (1 + O(3^20))
-
section
()¶ Returns a map back to the ring that converts elements of non-negative valuation.
EXAMPLES:
sage: R.<a> = ZqCA(27, implementation='FLINT') sage: K = R.fraction_field() sage: f = K.coerce_map_from(R) sage: f(K.gen()) a + O(3^20)
-
-
class
sage.rings.padics.padic_capped_absolute_element.
pAdicCoercion_ZZ_CA
¶ Bases:
sage.rings.morphism.RingHomomorphism_coercion
The canonical inclusion from the ring of integers to a capped absolute ring.
EXAMPLES:
sage: f = ZpCA(5).coerce_map_from(ZZ); f Ring Coercion morphism: From: Integer Ring To: 5-adic Ring with capped absolute precision 20
-
section
()¶ Returns a map back to the ring of integers that approximates an element by an integer.
EXAMPLES:
sage: f = ZpCA(5).coerce_map_from(ZZ).section() sage: f(ZpCA(5)(-1)) - 5^20 -1
-
-
class
sage.rings.padics.padic_capped_absolute_element.
pAdicConvert_CA_ZZ
¶ Bases:
sage.rings.morphism.RingMap
The map from a capped absolute ring back to the ring of integers that returns the the smallest non-negative integer approximation to its input which is accurate up to the precision.
Raises a
ValueError
if the input is not in the closure of the image of the ring of integers.EXAMPLES:
sage: f = ZpCA(5).coerce_map_from(ZZ).section(); f Set-theoretic ring morphism: From: 5-adic Ring with capped absolute precision 20 To: Integer Ring
-
class
sage.rings.padics.padic_capped_absolute_element.
pAdicConvert_CA_frac_field
¶ Bases:
sage.categories.morphism.Morphism
The section of the inclusion from \(\ZZ_q`\) to its fraction field.
EXAMPLES:
sage: R.<a> = ZqCA(27, implementation='FLINT') sage: K = R.fraction_field() sage: f = R.convert_map_from(K); f Generic morphism: From: Unramified Extension of 3-adic Field with capped relative precision 20 in a defined by (1 + O(3^20))*x^3 + (O(3^20))*x^2 + (2 + O(3^20))*x + (1 + O(3^20)) To: Unramified Extension of 3-adic Ring with capped absolute precision 20 in a defined by (1 + O(3^20))*x^3 + (O(3^20))*x^2 + (2 + O(3^20))*x + (1 + O(3^20))
-
class
sage.rings.padics.padic_capped_absolute_element.
pAdicConvert_QQ_CA
¶ Bases:
sage.categories.morphism.Morphism
The inclusion map from the rationals to a capped absolute ring that is defined on all elements with non-negative \(p\)-adic valuation.
EXAMPLES:
sage: f = ZpCA(5).convert_map_from(QQ); f Generic morphism: From: Rational Field To: 5-adic Ring with capped absolute precision 20
-
class
sage.rings.padics.padic_capped_absolute_element.
pAdicTemplateElement
¶ Bases:
sage.rings.padics.padic_generic_element.pAdicGenericElement
A class for common functionality among the \(p\)-adic template classes.
INPUT:
parent
– a local ring or fieldx
– data defining this element. Various types are supported, including ints, Integers, Rationals, PARI p-adics, integers mod \(p^k\) and other Sage p-adics.absprec
– a cap on the absolute precision of this elementrelprec
– a cap on the relative precision of this element
EXAMPLES:
sage: Zp(17)(17^3, 8, 4) 17^3 + O(17^7)
-
lift_to_precision
(absprec=None)¶ Returns another element of the same parent with absolute precision at least
absprec
, congruent to this \(p\)-adic element modulo the precision of this element.INPUT:
absprec
– an integer orNone
(default:None
), the absolute precision of the result. IfNone
, lifts to the maximum precision allowed.
Note
If setting
absprec
that high would violate the precision cap, raises a precision error. Note that the new digits will not necessarily be zero.EXAMPLES:
sage: R = ZpCA(17) sage: R(-1,2).lift_to_precision(10) 16 + 16*17 + O(17^10) sage: R(1,15).lift_to_precision(10) 1 + O(17^15) sage: R(1,15).lift_to_precision(30) Traceback (most recent call last): ... PrecisionError: Precision higher than allowed by the precision cap. sage: R(-1,2).lift_to_precision().precision_absolute() == R.precision_cap() True sage: R = Zp(5); c = R(17,3); c.lift_to_precision(8) 2 + 3*5 + O(5^8) sage: c.lift_to_precision().precision_relative() == R.precision_cap() True
Fixed modulus elements don’t raise errors:
sage: R = ZpFM(5); a = R(5); a.lift_to_precision(7) 5 + O(5^20) sage: a.lift_to_precision(10000) 5 + O(5^20)
-
padded_list
(n, lift_mode='simple')¶ Returns a list of coefficients of the uniformizer \(\pi\) starting with \(\pi^0\) up to \(\pi^n\) exclusive (padded with zeros if needed).
For a field element of valuation \(v\), starts at \(\pi^v\) instead.
INPUT:
n
- an integerlift_mode
- ‘simple’, ‘smallest’ or ‘teichmuller’
EXAMPLES:
sage: R = Zp(7,4,'capped-abs'); a = R(2*7+7**2); a.padded_list(5) [0, 2, 1, 0, 0] sage: R = Zp(7,4,'fixed-mod'); a = R(2*7+7**2); a.padded_list(5) [0, 2, 1, 0, 0]
For elements with positive valuation, this function will return a list with leading 0s if the parent is not a field:
sage: R = Zp(7,3,'capped-rel'); a = R(2*7+7**2); a.padded_list(5) [0, 2, 1, 0, 0] sage: R = Qp(7,3); a = R(2*7+7**2); a.padded_list(5) [2, 1, 0, 0] sage: a.padded_list(3) [2, 1]
-
residue
(absprec=1)¶ Reduce this element modulo \(p^\mathrm{absprec}\).
INPUT:
absprec
–0
or1
.
OUTPUT:
This element reduced modulo \(p^\mathrm{absprec}\) as an element of the residue field or the null ring.
EXAMPLES:
sage: R.<a> = ZqFM(27, 4) sage: (3 + 3*a).residue() 0 sage: (a + 1).residue() a0 + 1
TESTS:
sage: a.residue(0) 0 sage: a.residue(2) Traceback (most recent call last): ... NotImplementedError: reduction modulo p^n with n>1. sage: a.residue(10) Traceback (most recent call last): ... PrecisionError: insufficient precision to reduce modulo p^10. sage: R.<a> = ZqCA(27, 4) sage: (3 + 3*a).residue() 0 sage: (a + 1).residue() a0 + 1 sage: R.<a> = Qq(27, 4) sage: (3 + 3*a).residue() 0 sage: (a + 1).residue() a0 + 1 sage: (a/3).residue() Traceback (most recent call last): ... ValueError: element must have non-negative valuation in order to compute residue.
-
unit_part
()¶ Returns the unit part of this element.
This is the \(p\)-adic element \(u\) in the same ring so that this element is \(\pi^v u\), where \(\pi\) is a uniformizer and \(v\) is the valuation of this element.
-
sage.rings.padics.padic_capped_absolute_element.
unpickle_cae_v2
(cls, parent, value, absprec)¶ Unpickle capped absolute elements.
INPUT:
cls
– the class of the capped absolute element.parent
– the parent, a \(p\)-adic ringvalue
– a Python object wrapping a celement, of the kind accepted by the cunpickle function.absprec
– a Python int or Sage integer.
EXAMPLES:
sage: from sage.rings.padics.padic_capped_absolute_element import unpickle_cae_v2, pAdicCappedAbsoluteElement sage: R = ZpCA(5,8) sage: a = unpickle_cae_v2(pAdicCappedAbsoluteElement, R, 42, int(6)); a 2 + 3*5 + 5^2 + O(5^6) sage: a.parent() is R True