Recursive Species

class sage.combinat.species.recursive_species.CombinatorialSpecies

Bases: sage.combinat.species.species.GenericCombinatorialSpecies

EXAMPLES:

sage: F = CombinatorialSpecies()
sage: loads(dumps(F))
Combinatorial species
sage: X = species.SingletonSpecies()
sage: E = species.EmptySetSpecies()
sage: L = CombinatorialSpecies()
sage: L.define(E+X*L)
sage: L.generating_series().coefficients(4)
[1, 1, 1, 1]
sage: LL = loads(dumps(L))
sage: LL.generating_series().coefficients(4)
[1, 1, 1, 1]
define(x)

Defines self to be equal to the combinatorial species x. This is used to define combinatorial species recursively. All of the real work is done by calling the .set() method for each of the series associated to self.

EXAMPLES: The species of linear orders L can be recursively defined by \(L = 1 + X*L\) where 1 represents the empty set species and X represents the singleton species.

sage: X = species.SingletonSpecies()
sage: E = species.EmptySetSpecies()
sage: L = CombinatorialSpecies()
sage: L.define(E+X*L)
sage: L.generating_series().coefficients(4)
[1, 1, 1, 1]
sage: L.structures([1,2,3]).cardinality()
6
sage: L.structures([1,2,3]).list()
[1*(2*(3*{})),
 1*(3*(2*{})),
 2*(1*(3*{})),
 2*(3*(1*{})),
 3*(1*(2*{})),
 3*(2*(1*{}))]
sage: L = species.LinearOrderSpecies()
sage: L.generating_series().coefficients(4)
[1, 1, 1, 1]
sage: L.structures([1,2,3]).cardinality()
6
sage: L.structures([1,2,3]).list()
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

TESTS:

sage: A = CombinatorialSpecies()
sage: A.define(E+X*A*A)
sage: A.generating_series().coefficients(6)
[1, 1, 2, 5, 14, 42]
sage: A.generating_series().counts(6)
[1, 1, 4, 30, 336, 5040]
sage: len(A.structures([1,2,3,4]).list())
336
sage: A.isotype_generating_series().coefficients(6)
[1, 1, 2, 5, 14, 42]
sage: len(A.isotypes([1,2,3,4]).list())
14
sage: A = CombinatorialSpecies()
sage: A.define(X+A*A)
sage: A.generating_series().coefficients(6)
[0, 1, 1, 2, 5, 14]
sage: A.generating_series().counts(6)
[0, 1, 2, 12, 120, 1680]
sage: len(A.structures([1,2,3]).list())
12
sage: A.isotype_generating_series().coefficients(6)
[0, 1, 1, 2, 5, 14]
sage: len(A.isotypes([1,2,3,4]).list())
5
sage: X2 = X*X
sage: X5 = X2*X2*X
sage: A = CombinatorialSpecies()
sage: B = CombinatorialSpecies()
sage: C = CombinatorialSpecies()
sage: A.define(X5+B*B)
sage: B.define(X5+C*C)
sage: C.define(X2+C*C+A*A)
sage: A.generating_series().coefficients(Integer(10))
[0, 0, 0, 0, 0, 1, 0, 0, 1, 2]
sage: A.generating_series().coefficients(15)
[0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 5, 4, 14, 10, 48]
sage: B.generating_series().coefficients(15)
[0, 0, 0, 0, 1, 1, 2, 0, 5, 0, 14, 0, 44, 0, 138]
sage: C.generating_series().coefficients(15)
[0, 0, 1, 0, 1, 0, 2, 0, 5, 0, 15, 0, 44, 2, 142]
sage: F = CombinatorialSpecies()
sage: F.define(E+X+(X*F+X*X*F))
sage: F.generating_series().counts(10)
[1, 2, 6, 30, 192, 1560, 15120, 171360, 2217600, 32296320]
sage: F.generating_series().coefficients(10)
[1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
sage: F.isotype_generating_series().coefficients(10)
[1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
weight_ring()

EXAMPLES:

sage: F = species.CombinatorialSpecies()
sage: F.weight_ring()
Rational Field
sage: X = species.SingletonSpecies()
sage: E = species.EmptySetSpecies()
sage: L = CombinatorialSpecies()
sage: L.define(E+X*L)
sage: L.weight_ring()
Rational Field
class sage.combinat.species.recursive_species.CombinatorialSpeciesStructure(parent, s, **options)

Bases: sage.combinat.species.structure.SpeciesStructureWrapper

This is a class for the structures of species such as the sum species that do not provide “additional” structure. For example, if you have the sum \(C\) of species \(A\) and \(B\), then a structure of \(C\) will either be either something from \(A\) or \(B\). Instead of just returning one of these directly, a “wrapper” is put around them so that they have their parent is \(C\) rather than \(A\) or \(B\):

sage: X = species.SingletonSpecies()
sage: X2 = X+X
sage: s = X2.structures([1]).random_element(); s
1
sage: s.parent()
Sum of (Singleton species) and (Singleton species)
sage: from sage.combinat.species.structure import SpeciesStructureWrapper
sage: issubclass(type(s), SpeciesStructureWrapper)
True

EXAMPLES:

sage: E = species.SetSpecies(); B = E+E
sage: s = B.structures([1,2,3]).random_element()
sage: s.parent()
Sum of (Set species) and (Set species)
sage: s == loads(dumps(s))
True