FiniteGroups¶
-
class
sage.categories.finite_groups.
FiniteGroups
(base_category)¶ Bases:
sage.categories.category_with_axiom.CategoryWithAxiom
The category of finite (multiplicative) groups.
EXAMPLES:
sage: C = FiniteGroups(); C Category of finite groups sage: C.super_categories() [Category of finite monoids, Category of groups] sage: C.example() General Linear Group of degree 2 over Finite Field of size 3
TESTS:
sage: TestSuite(C).run()
-
class
Algebras
(category, *args)¶ Bases:
sage.categories.algebra_functor.AlgebrasCategory
TESTS:
sage: from sage.categories.covariant_functorial_construction import CovariantConstructionCategory sage: class FooBars(CovariantConstructionCategory): ....: _functor_category = "FooBars" ....: _base_category_class = (Category,) sage: Category.FooBars = lambda self: FooBars.category_of(self) sage: C = FooBars(ModulesWithBasis(ZZ)) sage: C Category of foo bars of modules with basis over Integer Ring sage: C.base_category() Category of modules with basis over Integer Ring sage: latex(C) \mathbf{FooBars}(\mathbf{ModulesWithBasis}_{\Bold{Z}}) sage: import __main__; __main__.FooBars = FooBars # Fake FooBars being defined in a python module sage: TestSuite(C).run()
-
extra_super_categories
()¶ Implement Maschke’s theorem.
In characteristic 0 all finite group algebras are semisimple.
EXAMPLES:
sage: FiniteGroups().Algebras(QQ).is_subcategory(Algebras(QQ).Semisimple()) True sage: FiniteGroups().Algebras(FiniteField(7)).is_subcategory(Algebras(QQ).Semisimple()) False sage: FiniteGroups().Algebras(ZZ).is_subcategory(Algebras(ZZ).Semisimple()) False sage: FiniteGroups().Algebras(Fields()).is_subcategory(Algebras(Fields()).Semisimple()) False
-
-
class
FiniteGroups.
ElementMethods
¶
-
class
FiniteGroups.
ParentMethods
¶ -
cardinality
()¶ Returns the cardinality of
self
, as perEnumeratedSets.ParentMethods.cardinality()
.This default implementation calls
order()
if available, and otherwise resorts to_cardinality_from_iterator()
. This is for backward compatibility only. Finite groups should override this method instead oforder()
.EXAMPLES:
We need to use a finite group which uses this default implementation of cardinality:
sage: R.<x> = PolynomialRing(QQ) sage: f = x^4 - 17*x^3 - 2*x + 1 sage: G = f.galois_group(pari_group=True); G PARI group [24, -1, 5, "S4"] of degree 4 sage: G.cardinality.__module__ 'sage.categories.finite_groups' sage: G.cardinality() 24
-
cayley_graph_disabled
(connecting_set=None)¶ AUTHORS:
- Bobby Moretti (2007-08-10)
- Robert Miller (2008-05-01): editing
-
conjugacy_classes
()¶ Return a list with all the conjugacy classes of the group.
This will eventually be a fall-back method for groups not defined over GAP. Right now just raises a
NotImplementedError
, until we include a non-GAP way of listing the conjugacy classes representatives.EXAMPLES:
sage: from sage.groups.group import FiniteGroup sage: G = FiniteGroup() sage: G.conjugacy_classes() Traceback (most recent call last): ... NotImplementedError: Listing the conjugacy classes for group <type 'sage.groups.group.FiniteGroup'> is not implemented
-
conjugacy_classes_representatives
()¶ Return a list of the conjugacy classes representatives of the group.
EXAMPLES:
sage: G = SymmetricGroup(3) sage: G.conjugacy_classes_representatives() [(), (1,2), (1,2,3)]
-
monoid_generators
()¶ Return monoid generators for
self
.For finite groups, the group generators are also monoid generators. Hence, this default implementation calls
group_generators()
.EXAMPLES:
sage: A = AlternatingGroup(4) sage: A.monoid_generators() Family ((2,3,4), (1,2,3))
-
semigroup_generators
()¶ Returns semigroup generators for self.
For finite groups, the group generators are also semigroup generators. Hence, this default implementation calls
group_generators()
.EXAMPLES:
sage: A = AlternatingGroup(4) sage: A.semigroup_generators() Family ((2,3,4), (1,2,3))
-
some_elements
()¶ Return some elements of
self
.EXAMPLES:
sage: A = AlternatingGroup(4) sage: A.some_elements() Family ((2,3,4), (1,2,3))
-
-
FiniteGroups.
example
()¶ Return an example of finite group, as per
Category.example()
.EXAMPLES:
sage: G = FiniteGroups().example(); G General Linear Group of degree 2 over Finite Field of size 3
-
class