Projective plane conics over finite fields¶
AUTHORS:
- Marco Streng (2010-07-20)
-
class
sage.schemes.plane_conics.con_finite_field.
ProjectiveConic_finite_field
(A, f)¶ Bases:
sage.schemes.plane_conics.con_field.ProjectiveConic_field
,sage.schemes.curves.projective_curve.ProjectivePlaneCurve_finite_field
Create a projective plane conic curve over a finite field. See
Conic
for full documentation.EXAMPLES:
sage: K.<a> = FiniteField(9, 'a') sage: P.<X, Y, Z> = K[] sage: Conic(X^2 + Y^2 - a*Z^2) Projective Conic Curve over Finite Field in a of size 3^2 defined by X^2 + Y^2 + (-a)*Z^2
TESTS:
sage: K.<a> = FiniteField(4, 'a') sage: Conic([a, 1, -1])._test_pickling()
-
count_points
(n)¶ If the base field \(B\) of \(self\) is finite of order \(q\), then returns the number of points over \(\GF{q}, ..., \GF{q^n}\).
EXAMPLES:
sage: P.<x,y,z> = GF(3)[] sage: c = Curve(x^2+y^2+z^2); c Projective Conic Curve over Finite Field of size 3 defined by x^2 + y^2 + z^2 sage: c.count_points(4) [4, 10, 28, 82]
-
has_rational_point
(point=False, read_cache=True, algorithm='default')¶ Always returns
True
because self has a point defined over its finite base field \(B\).If
point
is True, then returns a second output \(S\), which is a rational point if one exists.Points are cached. If
read_cache
is True, then cached information is used for the output if available. If no cached point is available orread_cache
is False, then random \(y\)-coordinates are tried ifself
is smooth and a singular point is returned otherwise.EXAMPLES:
sage: Conic(FiniteField(37), [1, 2, 3, 4, 5, 6]).has_rational_point() True sage: C = Conic(FiniteField(2), [1, 1, 1, 1, 1, 0]); C Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z sage: C.has_rational_point(point = True) # output is random (True, (0 : 0 : 1)) sage: p = next_prime(10^50) sage: F = FiniteField(p) sage: C = Conic(F, [1, 2, 3]); C Projective Conic Curve over Finite Field of size 100000000000000000000000000000000000000000000000151 defined by x^2 + 2*y^2 + 3*z^2 sage: C.has_rational_point(point = True) # output is random (True, (14971942941468509742682168602989039212496867586852 : 75235465708017792892762202088174741054630437326388 : 1) sage: F.<a> = FiniteField(7^20) sage: C = Conic([1, a, -5]); C Projective Conic Curve over Finite Field in a of size 7^20 defined by x^2 + (a)*y^2 + 2*z^2 sage: C.has_rational_point(point = True) # output is random (True, (a^18 + 2*a^17 + 4*a^16 + 6*a^13 + a^12 + 6*a^11 + 3*a^10 + 4*a^9 + 2*a^8 + 4*a^7 + a^6 + 4*a^4 + 6*a^2 + 3*a + 6 : 5*a^19 + 5*a^18 + 5*a^17 + a^16 + 2*a^15 + 3*a^14 + 4*a^13 + 5*a^12 + a^11 + 3*a^10 + 2*a^8 + 3*a^7 + 4*a^6 + 4*a^5 + 6*a^3 + 5*a^2 + 2*a + 4 : 1))
TESTS:
sage: l = Sequence(cartesian_product_iterator([[0, 1] for i in range(6)])) sage: bigF = GF(next_prime(2^100)) sage: bigF2 = GF(next_prime(2^50)^2, 'b') sage: m = [[F(b) for b in a] for a in l for F in [GF(2), GF(4, 'a'), GF(5), GF(9, 'a'), bigF, bigF2]] sage: m += [[F.random_element() for i in range(6)] for j in range(20) for F in [GF(5), bigF]] sage: c = [Conic(a) for a in m if a != [0,0,0,0,0,0]] sage: assert all([C.has_rational_point() for C in c]) sage: r = randrange(0, 5) sage: assert all([C.defining_polynomial()(Sequence(C.has_rational_point(point = True)[1])) == 0 for C in c[r::5]]) # long time (1.4s on sage.math, 2013)
-