Bijection classes for type \(D_4^{(3)}\).¶
Part of the (internal) classes which runs the bijection between rigged configurations and KR tableaux of type \(D_4^{(3)}\).
AUTHORS:
- Travis Scrimshaw (2014-09-10): Initial version
TESTS:
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 3], [[2, 1]])
sage: from sage.combinat.rigged_configurations.bij_type_D_tri import KRTToRCBijectionTypeDTri
sage: bijection = KRTToRCBijectionTypeDTri(KRT(pathlist=[[-1,2]]))
sage: TestSuite(bijection).run()
sage: RC = RiggedConfigurations(['D', 4, 3], [[2, 1]])
sage: from sage.combinat.rigged_configurations.bij_type_D_tri import RCToKRTBijectionTypeDTri
sage: bijection = RCToKRTBijectionTypeDTri(RC(partition_list=[[],[]]))
sage: TestSuite(bijection).run()
-
class
sage.combinat.rigged_configurations.bij_type_D_tri.
KRTToRCBijectionTypeDTri
(tp_krt)¶ Bases:
sage.combinat.rigged_configurations.bij_type_A.KRTToRCBijectionTypeA
Specific implementation of the bijection from KR tableaux to rigged configurations for type \(D_4^{(3)}\).
This inherits from type \(A_n^{(1)}\) because we use the same methods in some places.
-
next_state
(val)¶ Build the next state for type \(D_4^{(3)}\).
TESTS:
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['D', 4, 3], [[2,1]]) sage: from sage.combinat.rigged_configurations.bij_type_D_tri import KRTToRCBijectionTypeDTri sage: bijection = KRTToRCBijectionTypeDTri(KRT(pathlist=[[-1,2]])) sage: bijection.cur_path.insert(0, []) sage: bijection.cur_dims.insert(0, [0, 1]) sage: bijection.cur_path[0].insert(0, [2]) sage: bijection.next_state(2)
-
-
class
sage.combinat.rigged_configurations.bij_type_D_tri.
RCToKRTBijectionTypeDTri
(RC_element)¶ Bases:
sage.combinat.rigged_configurations.bij_type_A.RCToKRTBijectionTypeA
Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type \(D_4^{(3)}\).
-
next_state
(height)¶ Build the next state for type \(D_4^{(3)}\).
TESTS:
sage: RC = RiggedConfigurations(['D', 4, 3], [[2, 1]]) sage: from sage.combinat.rigged_configurations.bij_type_D_tri import RCToKRTBijectionTypeDTri sage: bijection = RCToKRTBijectionTypeDTri(RC(partition_list=[[3],[2]])) sage: bijection.next_state(1) -3
-