Spanning trees

This module is a collection of algorithms on spanning trees. Also included in the collection are algorithms for minimum spanning trees. See the book [JoynerNguyenCohen2010] for descriptions of spanning tree algorithms, including minimum spanning trees.

Todo

  • Rewrite kruskal() to use priority queues. Once Cython has support for generators and the yield statement, rewrite kruskal() to use yield.
  • Prim’s algorithm.
  • Boruvka’s algorithm.
  • Parallel version of Boruvka’s algorithm.
  • Randomized spanning tree construction.

REFERENCES:

[Aldous90]D. Aldous, ‘The random walk construction of uniform spanning trees’, SIAM J Discrete Math 3 (1990), 450-465.
[Broder89]A. Broder, ‘Generating random spanning trees’, Proceedings of the 30th IEEE Symposium on Foundations of Computer Science, 1989, pp. 442-447. doi:10.1109/SFCS.1989.63516, <http://www.cs.cmu.edu/~15859n/RelatedWork/Broder-GenRanSpanningTrees.pdf>_
[CormenEtAl2001]Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms. 2nd edition, The MIT Press, 2001.
[GoodrichTamassia2001]Michael T. Goodrich and Roberto Tamassia. Data Structures and Algorithms in Java. 2nd edition, John Wiley & Sons, 2001.
[JoynerNguyenCohen2010]David Joyner, Minh Van Nguyen, and Nathann Cohen. Algorithmic Graph Theory. 2010, http://code.google.com/p/graph-theory-algorithms-book/
[Sahni2000]Sartaj Sahni. Data Structures, Algorithms, and Applications in Java. McGraw-Hill, 2000.

Methods

sage.graphs.spanning_tree.kruskal(G, wfunction=None, check=False)

Minimum spanning tree using Kruskal’s algorithm.

This function assumes that we can only compute minimum spanning trees for undirected graphs. Such graphs can be weighted or unweighted, and they can have multiple edges (since we are computing the minimum spanning tree, only the minimum weight among all \((u,v)\)-edges is considered, for each pair of vertices \(u\), \(v\)).

INPUT:

  • G – an undirected graph.

  • weight_function (function) - a function that inputs an edge e and outputs its weight. An edge has the form (u,v,l), where u and v are vertices, l is a label (that can be of any kind). The weight_function can be used to transform the label into a weight. In particular:

    • if weight_function is not None, the weight of an edge e is weight_function(e);
    • if weight_function is None (default) and g is weighted (that is, g.weighted()==True), the weight of an edge e=(u,v,l) is l, independently on which kind of object l is: the ordering of labels relies on Python’s operator <;
    • if weight_function is None and g is not weighted, we set all weights to 1 (hence, the output can be any spanning tree).
  • check – Whether to first perform sanity checks on the input graph G. Default: check=False. If we toggle check=True, the following sanity checks are first performed on G prior to running Kruskal’s algorithm on that input graph:

    • Is G the null graph?
    • Is G disconnected?
    • Is G a tree?
    • Does G have self-loops?
    • Does G have multiple edges?

    By default, we turn off the sanity checks for performance reasons. This means that by default the function assumes that its input graph is connected, and has at least one vertex. Otherwise, you should set check=True to perform some sanity checks and preprocessing on the input graph. If G has multiple edges or self-loops, the algorithm still works, but the running-time can be improved if these edges are removed. To further improve the runtime of this function, you should call it directly instead of using it indirectly via sage.graphs.generic_graph.GenericGraph.min_spanning_tree().

OUTPUT:

The edges of a minimum spanning tree of G, if one exists, otherwise returns the empty list.

EXAMPLES:

An example from pages 727–728 in [Sahni2000].

sage: from sage.graphs.spanning_tree import kruskal
sage: G = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:{6:25, 7:24}})
sage: G.weighted(True)
sage: E = kruskal(G, check=True); E
[(1, 6, 10), (2, 3, 16), (2, 7, 14), (3, 4, 12), (4, 5, 22), (5, 6, 25)]

Variants of the previous example.

sage: H = Graph(G.edges(labels=False))
sage: kruskal(H, check=True)
[(1, 2, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 4, None), (4, 5, None)]
sage: G.allow_loops(True)
sage: G.allow_multiple_edges(True)
sage: G
Looped multi-graph on 7 vertices
sage: for i in range(20):
...       u = randint(1, 7)
...       v = randint(1, 7)
...       w = randint(0, 20)
...       G.add_edge(u, v, w)
sage: H = copy(G)
sage: H
Looped multi-graph on 7 vertices
sage: def sanitize(G):
...       G.allow_loops(False)
...       E = {}
...       for u, v, _ in G.multiple_edges():
...           E.setdefault(u, v)
...       for u in E:
...           W = sorted(G.edge_label(u, E[u]))
...           for w in W[1:]:
...               G.delete_edge(u, E[u], w)
...       G.allow_multiple_edges(False)
sage: sanitize(H)
sage: H
Graph on 7 vertices
sage: kruskal(G, check=True) == kruskal(H, check=True)
True

An example from pages 599–601 in [GoodrichTamassia2001].

sage: G = Graph({"SFO":{"BOS":2704, "ORD":1846, "DFW":1464, "LAX":337},
...   "BOS":{"ORD":867, "JFK":187, "MIA":1258},
...   "ORD":{"PVD":849, "JFK":740, "BWI":621, "DFW":802},
...   "DFW":{"JFK":1391, "MIA":1121, "LAX":1235},
...   "LAX":{"MIA":2342},
...   "PVD":{"JFK":144},
...   "JFK":{"MIA":1090, "BWI":184},
...   "BWI":{"MIA":946}})
sage: G.weighted(True)
sage: kruskal(G, check=True)
[('BOS', 'JFK', 187), ('BWI', 'JFK', 184), ('BWI', 'MIA', 946), ('BWI', 'ORD', 621), ('DFW', 'LAX', 1235), ('DFW', 'ORD', 802), ('JFK', 'PVD', 144), ('LAX', 'SFO', 337)]

An example from pages 568–569 in [CormenEtAl2001].

sage: G = Graph({"a":{"b":4, "h":8}, "b":{"c":8, "h":11},
...   "c":{"d":7, "f":4, "i":2}, "d":{"e":9, "f":14},
...   "e":{"f":10}, "f":{"g":2}, "g":{"h":1, "i":6}, "h":{"i":7}})
sage: G.weighted(True)
sage: kruskal(G, check=True)
[('a', 'b', 4), ('a', 'h', 8), ('c', 'd', 7), ('c', 'f', 4), ('c', 'i', 2), ('d', 'e', 9), ('f', 'g', 2), ('g', 'h', 1)]

An example with custom edge labels:

sage: G = Graph([[0,1,1],[1,2,1],[2,0,10]], weighted=True)
sage: weight = lambda e:3-e[0]-e[1]
sage: kruskal(G, check=True)
[(0, 1, 1), (1, 2, 1)]
sage: kruskal(G, wfunction=weight, check=True)
[(0, 2, 10), (1, 2, 1)]
sage: kruskal(G, wfunction=weight, check=False)
[(0, 2, 10), (1, 2, 1)]

TESTS:

The input graph must not be empty.

sage: from sage.graphs.spanning_tree import kruskal
sage: kruskal(graphs.EmptyGraph(), check=True)
[]
sage: kruskal(Graph(), check=True)
[]
sage: kruskal(Graph(multiedges=True), check=True)
[]
sage: kruskal(Graph(loops=True), check=True)
[]
sage: kruskal(Graph(multiedges=True, loops=True), check=True)
[]

The input graph must be connected.

sage: def my_disconnected_graph(n, ntries, directed=False, multiedges=False, loops=False):
...       G = Graph()
...       k = randint(1, n)
...       G.add_vertices(range(k))
...       if directed:
...           G = G.to_directed()
...       if multiedges:
...           G.allow_multiple_edges(True)
...       if loops:
...           G.allow_loops(True)
...       for i in range(ntries):
...           u = randint(0, k-1)
...           v = randint(0, k-1)
...           G.add_edge(u, v)
...       while G.is_connected():
...           u = randint(0, k-1)
...           v = randint(0, k-1)
...           G.delete_edge(u, v)
...       return G
sage: G = my_disconnected_graph(100, 50, directed=False, multiedges=False, loops=False)  # long time
sage: kruskal(G, check=True)  # long time
[]
sage: G = my_disconnected_graph(100, 50, directed=False, multiedges=True, loops=False)  # long time
sage: kruskal(G, check=True)  # long time
[]
sage: G = my_disconnected_graph(100, 50, directed=False, multiedges=True, loops=True)  # long time
sage: kruskal(G, check=True)  # long time
[]

If the input graph is a tree, then return its edges.

sage: T = graphs.RandomTree(randint(1, 50))  # long time
sage: T.edges() == kruskal(T, check=True)  # long time
True

If the input is not a Graph:

sage: kruskal("I am not a graph")
Traceback (most recent call last):
...
ValueError: The input G must be an undirected graph.
sage: kruskal(digraphs.Path(10))
Traceback (most recent call last):
...
ValueError: The input G must be an undirected graph.
sage.graphs.spanning_tree.random_spanning_tree(self, output_as_graph=False)

Return a random spanning tree of the graph.

This uses the Aldous-Broder algorithm ([Broder89], [Aldous90]) to generate a random spanning tree with the uniform distribution, as follows.

Start from any vertex. Perform a random walk by choosing at every step one neighbor uniformly at random. Every time a new vertex \(j\) is met, add the edge \((i, j)\) to the spanning tree, where \(i\) is the previous vertex in the random walk.

INPUT:

  • output_as_graph – boolean (default: False) whether to return a list of edges or a graph.

EXAMPLES:

sage: G = graphs.TietzeGraph()
sage: G.random_spanning_tree(output_as_graph=True)
Graph on 12 vertices
sage: rg = G.random_spanning_tree(); rg # random
[(0, 9),
(9, 11),
(0, 8),
(8, 7),
(7, 6),
(7, 2),
(2, 1),
(1, 5),
(9, 10),
(5, 4),
(2, 3)]
sage: Graph(rg).is_tree()
True

A visual example for the grid graph:

sage: G = graphs.Grid2dGraph(6, 6)
sage: pos = G.get_pos()
sage: T = G.random_spanning_tree(True)
sage: T.set_pos(pos)
sage: T.show(vertex_labels=False)

TESTS:

sage: G = Graph()
sage: G.random_spanning_tree()
Traceback (most recent call last):
...
ValueError: works only for non-empty connected graphs

sage: G = graphs.CompleteGraph(3).complement()
sage: G.random_spanning_tree()
Traceback (most recent call last):
...
ValueError: works only for non-empty connected graphs