ActiViz .NET
5.10.1
|
vtkMeshQuality - Calculate functions of quality of the elements of a mesh More...
Public Member Functions | |
vtkMeshQuality (IntPtr rawCppThis, bool callDisposalMethod, bool strong) | |
Automatically generated constructor - called from generated code. DO NOT call directly. More... | |
vtkMeshQuality () | |
Undocumented Block More... | |
virtual void | CompatibilityModeOff () |
CompatibilityMode governs whether, when both a quality function and cell volume are to be stored as cell data, the two values are stored in a single array. When compatibility mode is off (the default), two separate arrays are used – one labeled "Quality" and the other labeled "Volume". When compatibility mode is on, both values are stored in a single array, with volume as the first component and quality as the second component. More... | |
virtual void | CompatibilityModeOn () |
CompatibilityMode governs whether, when both a quality function and cell volume are to be stored as cell data, the two values are stored in a single array. When compatibility mode is off (the default), two separate arrays are used – one labeled "Quality" and the other labeled "Volume". When compatibility mode is on, both values are stored in a single array, with volume as the first component and quality as the second component. More... | |
virtual int | GetCompatibilityMode () |
CompatibilityMode governs whether, when both a quality function and cell volume are to be stored as cell data, the two values are stored in a single array. When compatibility mode is off (the default), two separate arrays are used – one labeled "Quality" and the other labeled "Volume". When compatibility mode is on, both values are stored in a single array, with volume as the first component and quality as the second component. More... | |
virtual int | GetHexQualityMeasure () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
virtual int | GetQuadQualityMeasure () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
int | GetRatio () |
These methods are deprecated. Use Get/SetSaveCellQuality() instead. More... | |
virtual int | GetSaveCellQuality () |
This variable controls whether or not cell quality is stored as cell data in the resulting mesh or discarded (leaving only the aggregate quality average of the entire mesh, recorded in the FieldData). More... | |
virtual int | GetTetQualityMeasure () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
virtual int | GetTriangleQualityMeasure () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
int | GetVolume () |
These methods are deprecated. The functionality of computing cell volume is being removed until it can be computed for any 3D cell. (The previous implementation only worked for tetrahedra.) More... | |
override int | IsA (string type) |
Undocumented Block More... | |
new vtkMeshQuality | NewInstance () |
Undocumented Block More... | |
virtual void | RatioOff () |
These methods are deprecated. Use Get/SetSaveCellQuality() instead. More... | |
virtual void | RatioOn () |
These methods are deprecated. Use Get/SetSaveCellQuality() instead. More... | |
virtual void | SaveCellQualityOff () |
This variable controls whether or not cell quality is stored as cell data in the resulting mesh or discarded (leaving only the aggregate quality average of the entire mesh, recorded in the FieldData). More... | |
virtual void | SaveCellQualityOn () |
This variable controls whether or not cell quality is stored as cell data in the resulting mesh or discarded (leaving only the aggregate quality average of the entire mesh, recorded in the FieldData). More... | |
virtual void | SetCompatibilityMode (int cm) |
CompatibilityMode governs whether, when both a quality function and cell volume are to be stored as cell data, the two values are stored in a single array. When compatibility mode is off (the default), two separate arrays are used – one labeled "Quality" and the other labeled "Volume". When compatibility mode is on, both values are stored in a single array, with volume as the first component and quality as the second component. More... | |
virtual void | SetHexQualityMeasure (int _arg) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToCondition () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToDiagonal () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToDimension () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToDistortion () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToEdgeRatio () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToJacobian () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToMaxAspectFrobenius () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToMaxEdgeRatios () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToMedAspectFrobenius () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToOddy () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToRelativeSizeSquared () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToScaledJacobian () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToShape () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToShapeAndSize () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToShear () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToShearAndSize () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToSkew () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToStretch () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToTaper () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetHexQualityMeasureToVolume () |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
virtual void | SetQuadQualityMeasure (int _arg) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToArea () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToAspectRatio () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToCondition () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToDistortion () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToEdgeRatio () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToJacobian () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToMaxAngle () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToMaxAspectFrobenius () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToMaxEdgeRatios () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToMedAspectFrobenius () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToMinAngle () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToOddy () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToRadiusRatio () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToRelativeSizeSquared () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToScaledJacobian () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToShape () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToShapeAndSize () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToShear () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToShearAndSize () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToSkew () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToStretch () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToTaper () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetQuadQualityMeasureToWarpage () |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
virtual void | SetRatio (int r) |
These methods are deprecated. Use Get/SetSaveCellQuality() instead. More... | |
virtual void | SetSaveCellQuality (int _arg) |
This variable controls whether or not cell quality is stored as cell data in the resulting mesh or discarded (leaving only the aggregate quality average of the entire mesh, recorded in the FieldData). More... | |
virtual void | SetTetQualityMeasure (int _arg) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToAspectBeta () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToAspectFrobenius () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToAspectGamma () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToAspectRatio () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToCollapseRatio () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToCondition () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToDistortion () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToEdgeRatio () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToJacobian () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToMinAngle () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToRadiusRatio () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToRelativeSizeSquared () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToScaledJacobian () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToShape () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToShapeAndSize () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTetQualityMeasureToVolume () |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
virtual void | SetTriangleQualityMeasure (int _arg) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToArea () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToAspectFrobenius () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToAspectRatio () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToCondition () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToDistortion () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToEdgeRatio () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToMaxAngle () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToMinAngle () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToRadiusRatio () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToRelativeSizeSquared () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToScaledJacobian () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToShape () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
void | SetTriangleQualityMeasureToShapeAndSize () |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION. More... | |
virtual void | SetVolume (int cv) |
These methods are deprecated. The functionality of computing cell volume is being removed until it can be computed for any 3D cell. (The previous implementation only worked for tetrahedra.) More... | |
virtual void | VolumeOff () |
These methods are deprecated. The functionality of computing cell volume is being removed until it can be computed for any 3D cell. (The previous implementation only worked for tetrahedra.) More... | |
virtual void | VolumeOn () |
These methods are deprecated. The functionality of computing cell volume is being removed until it can be computed for any 3D cell. (The previous implementation only worked for tetrahedra.) More... | |
![]() | |
vtkDataSetAlgorithm (IntPtr rawCppThis, bool callDisposalMethod, bool strong) | |
Automatically generated constructor - called from generated code. DO NOT call directly. More... | |
vtkDataSetAlgorithm () | |
Undocumented Block More... | |
void | AddInput (vtkDataObject arg0) |
Add an input of this algorithm. Note that these methods support old-style pipeline connections. When writing new code you should use the more general vtkAlgorithm::AddInputConnection(). See SetInput() for details. More... | |
void | AddInput (vtkDataSet arg0) |
Add an input of this algorithm. Note that these methods support old-style pipeline connections. When writing new code you should use the more general vtkAlgorithm::AddInputConnection(). See SetInput() for details. More... | |
void | AddInput (int arg0, vtkDataSet arg1) |
Add an input of this algorithm. Note that these methods support old-style pipeline connections. When writing new code you should use the more general vtkAlgorithm::AddInputConnection(). See SetInput() for details. More... | |
void | AddInput (int arg0, vtkDataObject arg1) |
Add an input of this algorithm. Note that these methods support old-style pipeline connections. When writing new code you should use the more general vtkAlgorithm::AddInputConnection(). See SetInput() for details. More... | |
vtkImageData | GetImageDataOutput () |
Get the output as vtkStructuredPoints. More... | |
vtkDataObject | GetInput () |
Get the input data object. This method is not recommended for use, but lots of old style filters use it. More... | |
vtkDataSet | GetOutput () |
Get the output data object for a port on this algorithm. More... | |
vtkDataSet | GetOutput (int arg0) |
Get the output data object for a port on this algorithm. More... | |
vtkPolyData | GetPolyDataOutput () |
Get the output as vtkPolyData. More... | |
vtkRectilinearGrid | GetRectilinearGridOutput () |
Get the output as vtkRectilinearGrid. More... | |
vtkStructuredGrid | GetStructuredGridOutput () |
Get the output as vtkStructuredGrid. More... | |
vtkStructuredPoints | GetStructuredPointsOutput () |
Get the output as vtkStructuredPoints. More... | |
vtkUnstructuredGrid | GetUnstructuredGridOutput () |
Get the output as vtkUnstructuredGrid. More... | |
new vtkDataSetAlgorithm | NewInstance () |
Undocumented Block More... | |
void | SetInput (vtkDataObject arg0) |
Set an input of this algorithm. You should not override these methods because they are not the only way to connect a pipeline. Note that these methods support old-style pipeline connections. When writing new code you should use the more general vtkAlgorithm::SetInputConnection(). These methods transform the input index to the input port index, not an index of a connection within a single port. More... | |
void | SetInput (int arg0, vtkDataObject arg1) |
Set an input of this algorithm. You should not override these methods because they are not the only way to connect a pipeline. Note that these methods support old-style pipeline connections. When writing new code you should use the more general vtkAlgorithm::SetInputConnection(). These methods transform the input index to the input port index, not an index of a connection within a single port. More... | |
void | SetInput (vtkDataSet arg0) |
Set an input of this algorithm. You should not override these methods because they are not the only way to connect a pipeline. Note that these methods support old-style pipeline connections. When writing new code you should use the more general vtkAlgorithm::SetInputConnection(). These methods transform the input index to the input port index, not an index of a connection within a single port. More... | |
void | SetInput (int arg0, vtkDataSet arg1) |
Set an input of this algorithm. You should not override these methods because they are not the only way to connect a pipeline. Note that these methods support old-style pipeline connections. When writing new code you should use the more general vtkAlgorithm::SetInputConnection(). These methods transform the input index to the input port index, not an index of a connection within a single port. More... | |
![]() | |
vtkAlgorithm (IntPtr rawCppThis, bool callDisposalMethod, bool strong) | |
Automatically generated constructor - called from generated code. DO NOT call directly. More... | |
vtkAlgorithm () | |
Undocumented Block More... | |
override void | Register (vtkObjectBase o) |
Participate in garbage collection. More... | |
virtual void | AbortExecuteOff () |
Set/Get the AbortExecute flag for the process object. Process objects may handle premature termination of execution in different ways. More... | |
virtual void | AbortExecuteOn () |
Set/Get the AbortExecute flag for the process object. Process objects may handle premature termination of execution in different ways. More... | |
virtual void | AddInputConnection (int port, vtkAlgorithmOutput input) |
Add a connection to the given input port index. See SetInputConnection() for details on input connections. This method is the complement to RemoveInputConnection() in that it adds only the connection specified without affecting other connections. Typical usage is More... | |
virtual void | AddInputConnection (vtkAlgorithmOutput input) |
Add a connection to the given input port index. See SetInputConnection() for details on input connections. This method is the complement to RemoveInputConnection() in that it adds only the connection specified without affecting other connections. Typical usage is More... | |
virtual double | ComputePriority () |
Returns the priority of the piece described by the current update extent. The priority is a number between 0.0 and 1.0 with 0 meaning skippable (REQUEST_DATA not needed) and 1.0 meaning important. More... | |
void | ConvertTotalInputToPortConnection (int ind, ref int port, ref int conn) |
Convenience routine to convert from a linear ordering of input connections to a port/connection pair. More... | |
virtual int | GetAbortExecute () |
Set/Get the AbortExecute flag for the process object. Process objects may handle premature termination of execution in different ways. More... | |
virtual uint | GetErrorCode () |
The error code contains a possible error that occured while reading or writing the file. More... | |
vtkExecutive | GetExecutive () |
Get this algorithm's executive. If it has none, a default executive will be created. More... | |
virtual vtkInformation | GetInformation () |
Set/Get the information object associated with this algorithm. More... | |
vtkInformation | GetInputArrayInformation (int idx) |
Get the info object for the specified input array to this algorithm More... | |
vtkAlgorithmOutput | GetInputConnection (int port, int index) |
Get the algorithm output port connected to an input port. More... | |
vtkDataObject | GetInputDataObject (int port, int connection) |
Get the data object that will contain the algorithm input for the given port and given connection. More... | |
vtkInformation | GetInputPortInformation (int port) |
Get the information object associated with an input port. There is one input port per kind of input to the algorithm. Each input port tells executives what kind of data and downstream requests this algorithm can handle for that input. More... | |
int | GetNumberOfInputConnections (int port) |
Get the number of inputs currently connected to a port. More... | |
int | GetNumberOfInputPorts () |
Get the number of input ports used by the algorithm. More... | |
int | GetNumberOfOutputPorts () |
Get the number of output ports provided by the algorithm. More... | |
vtkDataObject | GetOutputDataObject (int port) |
Get the data object that will contain the algorithm output for the given port. More... | |
vtkAlgorithmOutput | GetOutputPort (int index) |
Get a proxy object corresponding to the given output port of this algorithm. The proxy object can be passed to another algorithm's SetInputConnection(), AddInputConnection(), and RemoveInputConnection() methods to modify pipeline connectivity. More... | |
vtkAlgorithmOutput | GetOutputPort () |
Get a proxy object corresponding to the given output port of this algorithm. The proxy object can be passed to another algorithm's SetInputConnection(), AddInputConnection(), and RemoveInputConnection() methods to modify pipeline connectivity. More... | |
vtkInformation | GetOutputPortInformation (int port) |
Get the information object associated with an output port. There is one output port per output from the algorithm. Each output port tells executives what kind of upstream requests this algorithm can handle for that output. More... | |
virtual double | GetProgress () |
Set/Get the execution progress of a process object. More... | |
virtual double | GetProgressMaxValue () |
Set/Get the execution progress of a process object. More... | |
virtual double | GetProgressMinValue () |
Set/Get the execution progress of a process object. More... | |
virtual string | GetProgressText () |
Set the current text message associated with the progress state. This may be used by a calling process/GUI. Note: Because SetProgressText() is called from inside RequestData() it does not modify the algorithm object. Algorithms are not allowed to modify themselves from inside RequestData(). More... | |
virtual int | GetReleaseDataFlag () |
Turn release data flag on or off for all output ports. More... | |
int | GetTotalNumberOfInputConnections () |
Get the total number of inputs for this algorithm More... | |
int | HasExecutive () |
Check whether this algorithm has an assigned executive. This will NOT create a default executive. More... | |
virtual int | ModifyRequest (vtkInformation request, int when) |
This method gives the algorithm a chance to modify the contents of a request before or after (specified in the when argument) it is forwarded. The default implementation is empty. Returns 1 on success, 0 on failure. When can be either vtkExecutive::BeforeForward or vtkExecutive::AfterForward. More... | |
new vtkAlgorithm | NewInstance () |
Undocumented Block More... | |
int | ProcessRequest (vtkInformation request, vtkCollection inInfo, vtkInformationVector outInfo) |
Version of ProcessRequest() that is wrapped. This converts the collection to an array and calls the other version. More... | |
void | ReleaseDataFlagOff () |
Turn release data flag on or off for all output ports. More... | |
void | ReleaseDataFlagOn () |
Turn release data flag on or off for all output ports. More... | |
void | RemoveAllInputs () |
Remove all the input data. More... | |
virtual void | RemoveInputConnection (int port, vtkAlgorithmOutput input) |
Remove a connection from the given input port index. See SetInputConnection() for details on input connection. This method is the complement to AddInputConnection() in that it removes only the connection specified without affecting other connections. Typical usage is More... | |
virtual void | SetAbortExecute (int _arg) |
Set/Get the AbortExecute flag for the process object. Process objects may handle premature termination of execution in different ways. More... | |
virtual void | SetExecutive (vtkExecutive executive) |
Set this algorithm's executive. This algorithm is removed from any executive to which it has previously been assigned and then assigned to the given executive. More... | |
virtual void | SetInformation (vtkInformation arg0) |
Set/Get the information object associated with this algorithm. More... | |
virtual void | SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, string name) |
Set the input data arrays that this algorithm will process. Specifically the idx array that this algorithm will process (starting from 0) is the array on port, connection with the specified association and name or attribute type (such as SCALARS). The fieldAssociation refers to which field in the data object the array is stored. See vtkDataObject::FieldAssociations for detail. More... | |
virtual void | SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, int fieldAttributeType) |
Set the input data arrays that this algorithm will process. Specifically the idx array that this algorithm will process (starting from 0) is the array on port, connection with the specified association and name or attribute type (such as SCALARS). The fieldAssociation refers to which field in the data object the array is stored. See vtkDataObject::FieldAssociations for detail. More... | |
virtual void | SetInputArrayToProcess (int idx, vtkInformation info) |
Set the input data arrays that this algorithm will process. Specifically the idx array that this algorithm will process (starting from 0) is the array on port, connection with the specified association and name or attribute type (such as SCALARS). The fieldAssociation refers to which field in the data object the array is stored. See vtkDataObject::FieldAssociations for detail. More... | |
virtual void | SetInputArrayToProcess (int idx, int port, int connection, string fieldAssociation, string attributeTypeorName) |
String based versions of SetInputArrayToProcess(). Because fieldAssociation and fieldAttributeType are enums, they cannot be easily accessed from scripting language. These methods provides an easy and safe way of passing association and attribute type information. Field association is one of the following: More... | |
virtual void | SetInputConnection (int port, vtkAlgorithmOutput input) |
Set the connection for the given input port index. Each input port of a filter has a specific purpose. A port may have zero or more connections and the required number is specified by each filter. Setting the connection with this method removes all other connections from the port. To add more than one connection use AddInputConnection(). More... | |
virtual void | SetInputConnection (vtkAlgorithmOutput input) |
Set the connection for the given input port index. Each input port of a filter has a specific purpose. A port may have zero or more connections and the required number is specified by each filter. Setting the connection with this method removes all other connections from the port. To add more than one connection use AddInputConnection(). More... | |
virtual void | SetProgress (double _arg) |
Set/Get the execution progress of a process object. More... | |
void | SetProgressText (string ptext) |
Set the current text message associated with the progress state. This may be used by a calling process/GUI. Note: Because SetProgressText() is called from inside RequestData() it does not modify the algorithm object. Algorithms are not allowed to modify themselves from inside RequestData(). More... | |
virtual void | SetReleaseDataFlag (int arg0) |
Turn release data flag on or off for all output ports. More... | |
virtual void | Update () |
Bring this algorithm's outputs up-to-date. More... | |
int | UpdateExtentIsEmpty (vtkDataObject output) |
This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0. The source uses this call to determine whether to call Execute. More... | |
int | UpdateExtentIsEmpty (vtkInformation pinfo, int extentType) |
This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0. The source uses this call to determine whether to call Execute. More... | |
virtual void | UpdateInformation () |
Backward compatibility method to invoke UpdateInformation on executive. More... | |
void | UpdateProgress (double amount) |
Update the progress of the process object. If a ProgressMethod exists, executes it. Then set the Progress ivar to amount. The parameter amount should range between (0,1). More... | |
virtual void | UpdateWholeExtent () |
Bring this algorithm's outputs up-to-date. More... | |
![]() | |
vtkObject (IntPtr rawCppThis, bool callDisposalMethod, bool strong) | |
Automatically generated constructor - called from generated code. DO NOT call directly. More... | |
vtkObject () | |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
uint | AddObserver (uint arg0, vtkCommand arg1, float priority) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
uint | AddObserver (string arg0, vtkCommand arg1, float priority) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
virtual void | DebugOff () |
Turn debugging output off. More... | |
virtual void | DebugOn () |
Turn debugging output on. More... | |
vtkCommand | GetCommand (uint tag) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
byte | GetDebug () |
Get the value of the debug flag. More... | |
virtual uint | GetMTime () |
Return this object's modified time. More... | |
int | HasObserver (uint arg0, vtkCommand arg1) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
int | HasObserver (string arg0, vtkCommand arg1) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
int | HasObserver (uint arg0) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
int | HasObserver (string arg0) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
int | InvokeEvent (uint arg0, IntPtr callData) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
int | InvokeEvent (string arg0, IntPtr callData) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
int | InvokeEvent (uint arg0) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
int | InvokeEvent (string arg0) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
override int | IsA (string type) |
Undocumented Block More... | |
virtual void | Modified () |
Update the modification time for this object. Many filters rely on the modification time to determine if they need to recompute their data. The modification time is a unique monotonically increasing unsigned long integer. More... | |
vtkObject | NewInstance () |
Undocumented Block More... | |
void | RemoveAllObservers () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
void | RemoveObserver (vtkCommand arg0) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
void | RemoveObserver (uint tag) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
void | RemoveObservers (uint arg0, vtkCommand arg1) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
void | RemoveObservers (string arg0, vtkCommand arg1) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
void | RemoveObservers (uint arg0) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
void | RemoveObservers (string arg0) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
void | SetDebug (byte debugFlag) |
Set the value of the debug flag. A non-zero value turns debugging on. More... | |
override string | ToString () |
Returns the result of calling vtkObject::Print as a C# string. More... | |
delegate void | vtkObjectEventHandler (vtkObject sender, vtkObjectEventArgs e) |
Generic signature for all vtkObject events. More... | |
void | RemoveAllHandlersForAllEvents () |
Call RemoveAllHandlers on each non-null vtkObjectEventRelay. TODO: This method needs to get called by the generated Dispose. Make that happen... More... | |
![]() | |
vtkObjectBase (IntPtr rawCppThis, bool callDisposalMethod, bool strong) | |
Automatically generated constructor - called from generated code. DO NOT call directly. More... | |
vtkObjectBase () | |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
virtual void | FastDelete () |
Delete a reference to this object. This version will not invoke garbage collection and can potentially leak the object if it is part of a reference loop. Use this method only when it is known that the object has another reference and would not be collected if a full garbage collection check were done. More... | |
string | GetClassName () |
Return the class name as a string. This method is defined in all subclasses of vtkObjectBase with the vtkTypeMacro found in vtkSetGet.h. More... | |
int | GetReferenceCount () |
Return the current reference count of this object. More... | |
void | SetReferenceCount (int arg0) |
Sets the reference count. (This is very dangerous, use with care.) More... | |
Static Public Member Functions | |
static new vtkMeshQuality | New () |
Undocumented Block More... | |
static double | HexCondition (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexDiagonal (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexDimension (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexDistortion (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexEdgeRatio (vtkCell cell) |
This is a static function used to calculate the edge ratio of a hexahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The edge ratio of a hexahedron ![]() ![]() ![]() ![]() ![]() | |
static double | HexJacobian (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexMaxAspectFrobenius (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexMaxEdgeRatio (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexMedAspectFrobenius (vtkCell cell) |
This is a static function used to calculate the average Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexOddy (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexRelativeSizeSquared (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexScaledJacobian (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexShape (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexShapeAndSize (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexShear (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexShearAndSize (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexSkew (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexStretch (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexTaper (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | HexVolume (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static new int | IsTypeOf (string type) |
Undocumented Block More... | |
static double | QuadArea (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadAspectRatio (vtkCell cell) |
This is a static function used to calculate the aspect ratio of a planar quadrilateral. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. Use at your own risk with nonplanar quadrilaterals. The aspect ratio of a planar quadrilateral ![]() ![]() ![]() ![]() ![]() ![]() | |
static double | QuadCondition (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadDistortion (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadEdgeRatio (vtkCell cell) |
This is a static function used to calculate the edge ratio of a quadrilateral. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The edge ratio of a quadrilateral ![]() ![]() ![]() ![]() ![]() | |
static double | QuadJacobian (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadMaxAngle (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadMaxAspectFrobenius (vtkCell cell) |
This is a static function used to calculate the maximal Frobenius aspect of the 4 corner triangles of a planar quadrilateral, when the reference triangle elements are right isosceles at the quadrangle vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. Use at your own risk with nonplanar quadrilaterals. The Frobenius aspect of a triangle ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
static double | QuadMaxEdgeRatios (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadMedAspectFrobenius (vtkCell cell) |
This is a static function used to calculate the average Frobenius aspect of the 4 corner triangles of a planar quadrilateral, when the reference triangle elements are right isosceles at the quadrangle vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. Use at your own risk with nonplanar quadrilaterals. The Frobenius aspect of a triangle ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
static double | QuadMinAngle (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadOddy (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadRadiusRatio (vtkCell cell) |
This is a static function used to calculate the radius ratio of a planar quadrilateral. The name is only used by analogy with the triangle radius ratio, because in general a quadrilateral does not have a circumcircle nor an incircle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. Use at your own risk with nonplanar quadrilaterals. The radius ratio of a planar quadrilateral ![]() ![]() ![]() ![]() ![]() ![]() | |
static double | QuadRelativeSizeSquared (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadScaledJacobian (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadShape (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadShapeAndSize (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadShear (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadShearAndSize (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadSkew (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadStretch (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadTaper (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | QuadWarpage (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static new vtkMeshQuality | SafeDownCast (vtkObjectBase o) |
Undocumented Block More... | |
static double | TetAspectBeta (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetAspectFrobenius (vtkCell cell) |
This is a static function used to calculate the Frobenius condition number of the transformation matrix from a regular tetrahedron to a tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The Frobenius aspect of a tetrahedron ![]() ![]() ![]() ![]() ![]() ![]() | |
static double | TetAspectGamma (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetAspectRatio (vtkCell cell) |
This is a static function used to calculate the aspect ratio of a tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The aspect ratio of a tetrahedron ![]() ![]() ![]() ![]() ![]() | |
static double | TetCollapseRatio (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetCondition (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetDistortion (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetEdgeRatio (vtkCell cell) |
This is a static function used to calculate the edge ratio of a tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The edge ratio of a tetrahedron ![]() ![]() ![]() ![]() ![]() | |
static double | TetJacobian (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetMinAngle (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) dihedral angle of a tetrahedron, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetRadiusRatio (vtkCell cell) |
This is a static function used to calculate the radius ratio of a tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The radius ratio of a tetrahedron ![]() ![]() ![]() ![]() ![]() | |
static double | TetRelativeSizeSquared (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetScaledJacobian (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetShape (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetShapeandSize (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TetVolume (vtkCell cell) |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TriangleArea (vtkCell cell) |
This is a static function used to calculate the area of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TriangleAspectFrobenius (vtkCell cell) |
This is a static function used to calculate the Frobenius condition number of the transformation matrix from an equilateral triangle to a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The Frobenius aspect of a triangle ![]() ![]() ![]() ![]() ![]() | |
static double | TriangleAspectRatio (vtkCell cell) |
This is a static function used to calculate the aspect ratio of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The aspect ratio of a triangle ![]() ![]() ![]() ![]() ![]() | |
static double | TriangleCondition (vtkCell cell) |
Description This is a static function used to calculate the condition number of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TriangleDistortion (vtkCell cell) |
This is a static function used to calculate the distortion of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TriangleEdgeRatio (vtkCell cell) |
This is a static function used to calculate the edge ratio of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The edge ratio of a triangle ![]() ![]() ![]() ![]() ![]() | |
static double | TriangleMaxAngle (vtkCell cell) |
This is a static function used to calculate the maximal (nonoriented) angle of a triangle, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TriangleMinAngle (vtkCell cell) |
This is a static function used to calculate the minimal (nonoriented) angle of a triangle, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TriangleRadiusRatio (vtkCell cell) |
This is a static function used to calculate the radius ratio of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The radius ratio of a triangle ![]() ![]() ![]() ![]() ![]() | |
static double | TriangleRelativeSizeSquared (vtkCell cell) |
This is a static function used to calculate the square of the relative size of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TriangleScaledJacobian (vtkCell cell) |
This is a static function used to calculate the scaled Jacobian of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TriangleShape (vtkCell cell) |
This is a static function used to calculate the shape of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
static double | TriangleShapeAndSize (vtkCell cell) |
This is a static function used to calculate the product of shape and relative size of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. More... | |
![]() | |
static new vtkDataSetAlgorithm | New () |
Undocumented Block More... | |
static new int | IsTypeOf (string type) |
Undocumented Block More... | |
static new vtkDataSetAlgorithm | SafeDownCast (vtkObjectBase o) |
Undocumented Block More... | |
![]() | |
static new vtkAlgorithm | New () |
Undocumented Block More... | |
static vtkInformationInformationVectorKey | INPUT_ARRAYS_TO_PROCESS () |
Keys used to specify input port requirements. More... | |
static vtkInformationIntegerKey | INPUT_CONNECTION () |
Keys used to specify input port requirements. More... | |
static vtkInformationIntegerKey | INPUT_IS_OPTIONAL () |
Keys used to specify input port requirements. More... | |
static vtkInformationIntegerKey | INPUT_IS_REPEATABLE () |
Keys used to specify input port requirements. More... | |
static vtkInformationIntegerKey | INPUT_PORT () |
Keys used to specify input port requirements. More... | |
static vtkInformationStringVectorKey | INPUT_REQUIRED_DATA_TYPE () |
Keys used to specify input port requirements. More... | |
static vtkInformationInformationVectorKey | INPUT_REQUIRED_FIELDS () |
Keys used to specify input port requirements. More... | |
static new int | IsTypeOf (string type) |
Undocumented Block More... | |
static vtkInformationIntegerKey | MANAGES_METAINFORMATION () |
These are flags that can be set that let the pipeline keep accurate meta-information for ComputePriority. More... | |
static vtkInformationIntegerKey | PRESERVES_ATTRIBUTES () |
These are flags that can be set that let the pipeline keep accurate meta-information for ComputePriority. More... | |
static vtkInformationIntegerKey | PRESERVES_BOUNDS () |
These are flags that can be set that let the pipeline keep accurate meta-information for ComputePriority. More... | |
static vtkInformationIntegerKey | PRESERVES_DATASET () |
These are flags that can be set that let the pipeline keep accurate meta-information for ComputePriority. More... | |
static vtkInformationIntegerKey | PRESERVES_GEOMETRY () |
These are flags that can be set that let the pipeline keep accurate meta-information for ComputePriority. More... | |
static vtkInformationIntegerKey | PRESERVES_RANGES () |
These are flags that can be set that let the pipeline keep accurate meta-information for ComputePriority. More... | |
static vtkInformationIntegerKey | PRESERVES_TOPOLOGY () |
These are flags that can be set that let the pipeline keep accurate meta-information for ComputePriority. More... | |
static new vtkAlgorithm | SafeDownCast (vtkObjectBase o) |
Undocumented Block More... | |
static void | SetDefaultExecutivePrototype (vtkExecutive proto) |
If the DefaultExecutivePrototype is set, a copy of it is created in CreateDefaultExecutive() using NewInstance(). More... | |
![]() | |
static new vtkObject | New () |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
static void | BreakOnError () |
This method is called when vtkErrorMacro executes. It allows the debugger to break on error. More... | |
static int | GetGlobalWarningDisplay () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static void | GlobalWarningDisplayOff () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static void | GlobalWarningDisplayOn () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static new int | IsTypeOf (string type) |
Undocumented Block More... | |
static vtkObject | SafeDownCast (vtkObjectBase o) |
Undocumented Block More... | |
static void | SetGlobalWarningDisplay (int val) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
![]() | |
static vtkObjectBase | New () |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
static int | IsTypeOf (string name) |
Return 1 if this class type is the same type of (or a subclass of) the named class. Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h. More... | |
Public Attributes | |
new const string | MRFullTypeName = "Kitware.VTK.vtkMeshQuality" |
Automatically generated type registration mechanics. More... | |
![]() | |
new const string | MRFullTypeName = "Kitware.VTK.vtkDataSetAlgorithm" |
Automatically generated type registration mechanics. More... | |
![]() | |
new const string | MRFullTypeName = "Kitware.VTK.vtkAlgorithm" |
Automatically generated type registration mechanics. More... | |
![]() | |
new const string | MRFullTypeName = "Kitware.VTK.vtkObject" |
Automatically generated type registration mechanics. More... | |
![]() | |
new const string | MRFullTypeName = "Kitware.VTK.vtkObjectBase" |
Automatically generated type registration mechanics. More... | |
![]() | |
const string | vtkChartsEL_dll = "libKitware.VTK.vtkCharts.Unmanaged.so" |
Export layer functions for 'vtkCharts' are exported from the DLL named by the value of this variable. More... | |
const string | vtkCommonEL_dll = "libKitware.VTK.vtkCommon.Unmanaged.so" |
Export layer functions for 'vtkCommon' are exported from the DLL named by the value of this variable. More... | |
const string | vtkFilteringEL_dll = "libKitware.VTK.vtkFiltering.Unmanaged.so" |
Export layer functions for 'vtkFiltering' are exported from the DLL named by the value of this variable. More... | |
const string | vtkGenericFilteringEL_dll = "libKitware.VTK.vtkGenericFiltering.Unmanaged.so" |
Export layer functions for 'vtkGenericFiltering' are exported from the DLL named by the value of this variable. More... | |
const string | vtkGeovisEL_dll = "libKitware.VTK.vtkGeovis.Unmanaged.so" |
Export layer functions for 'vtkGeovis' are exported from the DLL named by the value of this variable. More... | |
const string | vtkGraphicsEL_dll = "libKitware.VTK.vtkGraphics.Unmanaged.so" |
Export layer functions for 'vtkGraphics' are exported from the DLL named by the value of this variable. More... | |
const string | vtkHybridEL_dll = "libKitware.VTK.vtkHybrid.Unmanaged.so" |
Export layer functions for 'vtkHybrid' are exported from the DLL named by the value of this variable. More... | |
const string | vtkIOEL_dll = "libKitware.VTK.vtkIO.Unmanaged.so" |
Export layer functions for 'vtkIO' are exported from the DLL named by the value of this variable. More... | |
const string | vtkImagingEL_dll = "libKitware.VTK.vtkImaging.Unmanaged.so" |
Export layer functions for 'vtkImaging' are exported from the DLL named by the value of this variable. More... | |
const string | vtkInfovisEL_dll = "libKitware.VTK.vtkInfovis.Unmanaged.so" |
Export layer functions for 'vtkInfovis' are exported from the DLL named by the value of this variable. More... | |
const string | vtkParallelEL_dll = "libKitware.VTK.vtkParallel.Unmanaged.so" |
Export layer functions for 'vtkParallel' are exported from the DLL named by the value of this variable. More... | |
const string | vtkRenderingEL_dll = "libKitware.VTK.vtkRendering.Unmanaged.so" |
Export layer functions for 'vtkRendering' are exported from the DLL named by the value of this variable. More... | |
const string | vtkViewsEL_dll = "libKitware.VTK.vtkViews.Unmanaged.so" |
Export layer functions for 'vtkViews' are exported from the DLL named by the value of this variable. More... | |
const string | vtkVolumeRenderingEL_dll = "libKitware.VTK.vtkVolumeRendering.Unmanaged.so" |
Export layer functions for 'vtkVolumeRendering' are exported from the DLL named by the value of this variable. More... | |
const string | vtkWidgetsEL_dll = "libKitware.VTK.vtkWidgets.Unmanaged.so" |
Export layer functions for 'vtkWidgets' are exported from the DLL named by the value of this variable. More... | |
Static Public Attributes | |
static new readonly string | MRClassNameKey = "14vtkMeshQuality" |
Automatically generated type registration mechanics. More... | |
![]() | |
static new readonly string | MRClassNameKey = "19vtkDataSetAlgorithm" |
Automatically generated type registration mechanics. More... | |
![]() | |
static new readonly string | MRClassNameKey = "12vtkAlgorithm" |
Automatically generated type registration mechanics. More... | |
![]() | |
static new readonly string | MRClassNameKey = "9vtkObject" |
Automatically generated type registration mechanics. More... | |
![]() | |
static new readonly string | MRClassNameKey = "13vtkObjectBase" |
Automatically generated type registration mechanics. More... | |
Protected Member Functions | |
override void | Dispose (bool disposing) |
Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly. More... | |
![]() | |
override void | Dispose (bool disposing) |
Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly. More... | |
![]() | |
override void | Dispose (bool disposing) |
Participate in garbage collection. More... | |
![]() | |
override void | Dispose (bool disposing) |
Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly. More... | |
![]() | |
override void | Dispose (bool disposing) |
Decrease the reference count (release by another object). This has the same effect as invoking Delete() (i.e., it reduces the reference count by 1). More... | |
![]() | |
WrappedObject (IntPtr rawCppThis, bool callDisposalMethod, bool strong) | |
Constructor expected by the mummy Runtime. More... | |
Static Private Member Functions | |
static | vtkMeshQuality () |
Automatically generated type registration mechanics. More... | |
Additional Inherited Members | |
![]() | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | AbortCheckEvt |
The AbortCheckEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.AbortCheckEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | AnimationCueTickEvt |
The AnimationCueTickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.AnimationCueTickEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | AnyEvt |
The AnyEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.AnyEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | CharEvt |
The CharEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.CharEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ConfigureEvt |
The ConfigureEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ConfigureEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ConnectionClosedEvt |
The ConnectionClosedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ConnectionClosedEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ConnectionCreatedEvt |
The ConnectionCreatedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ConnectionCreatedEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | CreateTimerEvt |
The CreateTimerEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.CreateTimerEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | CursorChangedEvt |
The CursorChangedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.CursorChangedEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | DeleteEvt |
The DeleteEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DeleteEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | DestroyTimerEvt |
The DestroyTimerEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DestroyTimerEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | DisableEvt |
The DisableEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DisableEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | DomainModifiedEvt |
The DomainModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.DomainModifiedEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | EnableEvt |
The EnableEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EnableEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | EndAnimationCueEvt |
The EndAnimationCueEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndAnimationCueEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | EndEvt |
The EndEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | EndInteractionEvt |
The EndInteractionEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndInteractionEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | EndPickEvt |
The EndPickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndPickEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | EndWindowLevelEvt |
The EndWindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EndWindowLevelEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | EnterEvt |
The EnterEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.EnterEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ErrorEvt |
The ErrorEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ErrorEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ExecuteInformationEvt |
The ExecuteInformationEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ExecuteInformationEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ExitEvt |
The ExitEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ExitEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ExposeEvt |
The ExposeEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ExposeEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | InteractionEvt |
The InteractionEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.InteractionEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | KeyPressEvt |
The KeyPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.KeyPressEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | KeyReleaseEvt |
The KeyReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.KeyReleaseEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | LeaveEvt |
The LeaveEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.LeaveEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | LeftButtonPressEvt |
The LeftButtonPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.LeftButtonPressEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | LeftButtonReleaseEvt |
The LeftButtonReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.LeftButtonReleaseEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | MiddleButtonPressEvt |
The MiddleButtonPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MiddleButtonPressEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | MiddleButtonReleaseEvt |
The MiddleButtonReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MiddleButtonReleaseEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ModifiedEvt |
The ModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ModifiedEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | MouseMoveEvt |
The MouseMoveEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MouseMoveEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | MouseWheelBackwardEvt |
The MouseWheelBackwardEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MouseWheelBackwardEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | MouseWheelForwardEvt |
The MouseWheelForwardEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.MouseWheelForwardEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | PickEvt |
The PickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PickEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | PlacePointEvt |
The PlacePointEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PlacePointEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | PlaceWidgetEvt |
The PlaceWidgetEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PlaceWidgetEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ProgressEvt |
The ProgressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ProgressEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | PropertyModifiedEvt |
The PropertyModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.PropertyModifiedEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | RegisterEvt |
The RegisterEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RegisterEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | RenderEvt |
The RenderEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RenderEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | RenderWindowMessageEvt |
The RenderWindowMessageEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RenderWindowMessageEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ResetCameraClippingRangeEvt |
The ResetCameraClippingRangeEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ResetCameraClippingRangeEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ResetCameraEvt |
The ResetCameraEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ResetCameraEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | ResetWindowLevelEvt |
The ResetWindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.ResetWindowLevelEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | RightButtonPressEvt |
The RightButtonPressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RightButtonPressEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | RightButtonReleaseEvt |
The RightButtonReleaseEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.RightButtonReleaseEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | SelectionChangedEvt |
The SelectionChangedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.SelectionChangedEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | SetOutputEvt |
The SetOutputEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.SetOutputEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | StartAnimationCueEvt |
The StartAnimationCueEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartAnimationCueEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | StartEvt |
The StartEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | StartInteractionEvt |
The StartInteractionEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartInteractionEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | StartPickEvt |
The StartPickEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartPickEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | StartWindowLevelEvt |
The StartWindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.StartWindowLevelEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | TimerEvt |
The TimerEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.TimerEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | UnRegisterEvt |
The UnRegisterEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UnRegisterEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | UpdateEvt |
The UpdateEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UpdateEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | UpdateInformationEvt |
The UpdateInformationEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UpdateInformationEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | UpdatePropertyEvt |
The UpdatePropertyEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.UpdatePropertyEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | VolumeMapperComputeGradientsEndEvt |
The VolumeMapperComputeGradientsEndEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperComputeGradientsEndEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | VolumeMapperComputeGradientsProgressEvt |
The VolumeMapperComputeGradientsProgressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperComputeGradientsProgressEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | VolumeMapperComputeGradientsStartEvt |
The VolumeMapperComputeGradientsStartEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperComputeGradientsStartEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | VolumeMapperRenderEndEvt |
The VolumeMapperRenderEndEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperRenderEndEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | VolumeMapperRenderProgressEvt |
The VolumeMapperRenderProgressEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperRenderProgressEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | VolumeMapperRenderStartEvt |
The VolumeMapperRenderStartEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.VolumeMapperRenderStartEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | WarningEvt |
The WarningEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WarningEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | WidgetActivateEvt |
The WidgetActivateEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WidgetActivateEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | WidgetModifiedEvt |
The WidgetModifiedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WidgetModifiedEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | WidgetValueChangedEvt |
The WidgetValueChangedEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WidgetValueChangedEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | WindowLevelEvt |
The WindowLevelEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WindowLevelEvent as the eventId parameter. More... | |
Kitware.VTK.vtkObject.vtkObjectEventHandler | WrongTagEvt |
The WrongTagEvt event is invoked when the sender's InvokeEvent method is called with vtkCommand.EventIds.WrongTagEvent as the eventId parameter. More... | |
vtkMeshQuality - Calculate functions of quality of the elements of a mesh
Description vtkMeshQuality computes one or more functions of (geometric) quality for each 2-D and 3-D cell (triangle, quadrilateral, tetrahedron, or hexahedron) of a mesh. These functions of quality are then averaged over the entire mesh. The minimum, average, maximum, and unbiased variance of quality for each type of cell is stored in the output mesh's FieldData. The FieldData arrays are named "Mesh Triangle Quality," "Mesh Quadrilateral Quality," "Mesh Tetrahedron Quality," and "Mesh Hexahedron Quality." Each array has a single tuple with 5 components. The first 4 components are the quality statistics mentioned above; the final value is the number of cells of the given type. This final component makes aggregation of statistics for distributed mesh data possible.
By default, the per-cell quality is added to the mesh's cell data, in an array named "Quality." Cell types not supported by this filter will have an entry of 0. Use SaveCellQualityOff() to store only the final statistics.
This version of the filter written by Philippe Pebay and David Thompson overtakes an older version written by Leila Baghdadi, Hanif Ladak, and David Steinman at the Imaging Research Labs, Robarts Research Institute. That version only supported tetrahedral radius ratio. See the CompatibilityModeOn() member for information on how to make this filter behave like the previous implementation. For more information on the triangle quality functions of this class, cf. Pebay & Baker 2003, Analysis of triangle quality measures, Math Comp 72:244. For more information on the quadrangle quality functions of this class, cf. Pebay 2004, Planar Quadrangle Quality Measures, Eng Comp 20:2.
Caveats While more general than before, this class does not address many cell types, including wedges and pyramids in 3D and triangle strips and fans in 2D (among others). Most quadrilateral quality functions are intended for planar quadrilaterals only. The minimal angle is not, strictly speaking, a quality function, but it is provided because of its useage by many authors.
|
staticprivate |
Automatically generated type registration mechanics.
Kitware.VTK.vtkMeshQuality.vtkMeshQuality | ( | IntPtr | rawCppThis, |
bool | callDisposalMethod, | ||
bool | strong | ||
) |
Automatically generated constructor - called from generated code. DO NOT call directly.
Kitware.VTK.vtkMeshQuality.vtkMeshQuality | ( | ) |
Undocumented Block
|
virtual |
CompatibilityMode governs whether, when both a quality function and cell volume are to be stored as cell data, the two values are stored in a single array. When compatibility mode is off (the default), two separate arrays are used – one labeled "Quality" and the other labeled "Volume". When compatibility mode is on, both values are stored in a single array, with volume as the first component and quality as the second component.
Enabling CompatibilityMode changes the default tetrahedral quality function to VTK_QUALITY_RADIUS_RATIO and turns volume computation on. (This matches the default behavior of the initial implementation of vtkMeshQuality.) You may change quality function and volume computation without leaving compatibility mode.
Disabling compatibility mode does not affect the current volume computation or tetrahedral quality function settings.
The final caveat to CompatibilityMode is that regardless of its setting, the resulting array will be of type vtkDoubleArray rather than the original vtkFloatArray. This is a safety function to keep the authors from diving off of the Combinatorial Coding Cliff into Certain Insanity.
|
virtual |
CompatibilityMode governs whether, when both a quality function and cell volume are to be stored as cell data, the two values are stored in a single array. When compatibility mode is off (the default), two separate arrays are used – one labeled "Quality" and the other labeled "Volume". When compatibility mode is on, both values are stored in a single array, with volume as the first component and quality as the second component.
Enabling CompatibilityMode changes the default tetrahedral quality function to VTK_QUALITY_RADIUS_RATIO and turns volume computation on. (This matches the default behavior of the initial implementation of vtkMeshQuality.) You may change quality function and volume computation without leaving compatibility mode.
Disabling compatibility mode does not affect the current volume computation or tetrahedral quality function settings.
The final caveat to CompatibilityMode is that regardless of its setting, the resulting array will be of type vtkDoubleArray rather than the original vtkFloatArray. This is a safety function to keep the authors from diving off of the Combinatorial Coding Cliff into Certain Insanity.
|
protected |
Automatically generated protected Dispose method - called from public Dispose or the C# destructor. DO NOT call directly.
|
virtual |
CompatibilityMode governs whether, when both a quality function and cell volume are to be stored as cell data, the two values are stored in a single array. When compatibility mode is off (the default), two separate arrays are used – one labeled "Quality" and the other labeled "Volume". When compatibility mode is on, both values are stored in a single array, with volume as the first component and quality as the second component.
Enabling CompatibilityMode changes the default tetrahedral quality function to VTK_QUALITY_RADIUS_RATIO and turns volume computation on. (This matches the default behavior of the initial implementation of vtkMeshQuality.) You may change quality function and volume computation without leaving compatibility mode.
Disabling compatibility mode does not affect the current volume computation or tetrahedral quality function settings.
The final caveat to CompatibilityMode is that regardless of its setting, the resulting array will be of type vtkDoubleArray rather than the original vtkFloatArray. This is a safety function to keep the authors from diving off of the Combinatorial Coding Cliff into Certain Insanity.
|
virtual |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
|
virtual |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
int Kitware.VTK.vtkMeshQuality.GetRatio | ( | ) |
These methods are deprecated. Use Get/SetSaveCellQuality() instead.
Formerly, SetRatio could be used to disable computation of the tetrahedral radius ratio so that volume alone could be computed. Now, cell quality is always computed, but you may decide not to store the result for each cell. This allows average cell quality of a mesh to be calculated without requiring per-cell storage.
|
virtual |
This variable controls whether or not cell quality is stored as cell data in the resulting mesh or discarded (leaving only the aggregate quality average of the entire mesh, recorded in the FieldData).
|
virtual |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
|
virtual |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
int Kitware.VTK.vtkMeshQuality.GetVolume | ( | ) |
These methods are deprecated. The functionality of computing cell volume is being removed until it can be computed for any 3D cell. (The previous implementation only worked for tetrahedra.)
For now, turning on the volume computation will put this filter into "compatibility mode," where tetrahedral cell volume is stored in first component of each output tuple and the radius ratio is stored in the second component. You may also use CompatibilityModeOn()/Off() to enter this mode. In this mode, cells other than tetrahedra will have report a volume of 0.0 (if volume computation is enabled).
By default, volume computation is disabled and compatibility mode is off, since it does not make a lot of sense for meshes with non-tetrahedral cells.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the edge ratio of a hexahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The edge ratio of a hexahedron is:
, where
and
respectively denote the greatest and the smallest edge lengths of
.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the average Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 8 corner tetrahedra of a hexahedron, when the reference tetrahedral elements are right isosceles at the hexahedron vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
virtual |
Undocumented Block
Reimplemented from Kitware.VTK.vtkDataSetAlgorithm.
|
static |
Undocumented Block
|
static |
Undocumented Block
new vtkMeshQuality Kitware.VTK.vtkMeshQuality.NewInstance | ( | ) |
Undocumented Block
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the aspect ratio of a planar quadrilateral. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. Use at your own risk with nonplanar quadrilaterals. The aspect ratio of a planar quadrilateral is:
, where
,
and
respectively denote the perimeter, the greatest edge length and the area of
.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the edge ratio of a quadrilateral. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The edge ratio of a quadrilateral is:
, where
and
respectively denote the greatest and the smallest edge lengths of
.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the maximal Frobenius aspect of the 4 corner triangles of a planar quadrilateral, when the reference triangle elements are right isosceles at the quadrangle vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. Use at your own risk with nonplanar quadrilaterals. The Frobenius aspect of a triangle , when the reference element is right isosceles at vertex
, is:
, where
and
respectively denote the sum of the squared lengths of the edges attached to
and the area of
.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the average Frobenius aspect of the 4 corner triangles of a planar quadrilateral, when the reference triangle elements are right isosceles at the quadrangle vertices. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. Use at your own risk with nonplanar quadrilaterals. The Frobenius aspect of a triangle , when the reference element is right isosceles at vertex
, is:
, where
and
respectively denote the sum of the squared lengths of the edges attached to
and the area of
.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the radius ratio of a planar quadrilateral. The name is only used by analogy with the triangle radius ratio, because in general a quadrilateral does not have a circumcircle nor an incircle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. Use at your own risk with nonplanar quadrilaterals. The radius ratio of a planar quadrilateral is:
, where
,
and
respectively denote the sum of the squared edge lengths, the greatest amongst diagonal and edge lengths and the smallest area of the 4 triangles extractable from
.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a quadrilateral, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
virtual |
These methods are deprecated. Use Get/SetSaveCellQuality() instead.
Formerly, SetRatio could be used to disable computation of the tetrahedral radius ratio so that volume alone could be computed. Now, cell quality is always computed, but you may decide not to store the result for each cell. This allows average cell quality of a mesh to be calculated without requiring per-cell storage.
|
virtual |
These methods are deprecated. Use Get/SetSaveCellQuality() instead.
Formerly, SetRatio could be used to disable computation of the tetrahedral radius ratio so that volume alone could be computed. Now, cell quality is always computed, but you may decide not to store the result for each cell. This allows average cell quality of a mesh to be calculated without requiring per-cell storage.
|
static |
Undocumented Block
|
virtual |
This variable controls whether or not cell quality is stored as cell data in the resulting mesh or discarded (leaving only the aggregate quality average of the entire mesh, recorded in the FieldData).
|
virtual |
This variable controls whether or not cell quality is stored as cell data in the resulting mesh or discarded (leaving only the aggregate quality average of the entire mesh, recorded in the FieldData).
|
virtual |
CompatibilityMode governs whether, when both a quality function and cell volume are to be stored as cell data, the two values are stored in a single array. When compatibility mode is off (the default), two separate arrays are used – one labeled "Quality" and the other labeled "Volume". When compatibility mode is on, both values are stored in a single array, with volume as the first component and quality as the second component.
Enabling CompatibilityMode changes the default tetrahedral quality function to VTK_QUALITY_RADIUS_RATIO and turns volume computation on. (This matches the default behavior of the initial implementation of vtkMeshQuality.) You may change quality function and volume computation without leaving compatibility mode.
Disabling compatibility mode does not affect the current volume computation or tetrahedral quality function settings.
The final caveat to CompatibilityMode is that regardless of its setting, the resulting array will be of type vtkDoubleArray rather than the original vtkFloatArray. This is a safety function to keep the authors from diving off of the Combinatorial Coding Cliff into Certain Insanity.
|
virtual |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToCondition | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToDiagonal | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToDimension | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToDistortion | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToEdgeRatio | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToJacobian | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToMaxAspectFrobenius | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToMaxEdgeRatios | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToMedAspectFrobenius | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToOddy | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToRelativeSizeSquared | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToScaledJacobian | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToShape | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToShapeAndSize | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToShear | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToShearAndSize | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToSkew | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToStretch | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToTaper | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetHexQualityMeasureToVolume | ( | ) |
Set/Get the particular estimator used to measure the quality of hexahedra. The default is VTK_QUALITY_MAX_ASPECT_FROBENIUS and valid values also include VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MAX_ASPECT_FROBENIUS, VTK_QUALITY_MAX_EDGE_RATIO, VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_VOLUME, VTK_QUALITY_STRETCH, VTK_QUALITY_DIAGONAL, VTK_QUALITY_DIMENSION, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
|
virtual |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToArea | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToAspectRatio | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToCondition | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToDistortion | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToEdgeRatio | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToJacobian | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToMaxAngle | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToMaxAspectFrobenius | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToMaxEdgeRatios | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToMedAspectFrobenius | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToMinAngle | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToOddy | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToRadiusRatio | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToRelativeSizeSquared | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToScaledJacobian | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToShape | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToShapeAndSize | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToShear | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToShearAndSize | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToSkew | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToStretch | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToTaper | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
void Kitware.VTK.vtkMeshQuality.SetQuadQualityMeasureToWarpage | ( | ) |
Set/Get the particular estimator used to measure the quality of quadrilaterals. The default is VTK_QUALITY_EDGE_RATIO and valid values also include VTK_QUALITY_RADIUS_RATIO, VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_MAX_EDGE_RATIO VTK_QUALITY_SKEW, VTK_QUALITY_TAPER, VTK_QUALITY_WARPAGE, VTK_QUALITY_AREA, VTK_QUALITY_STRETCH, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_ODDY, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHEAR, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, VTK_QUALITY_SHEAR_AND_SIZE, and VTK_QUALITY_DISTORTION.
Scope: Except for VTK_QUALITY_EDGE_RATIO, these estimators are intended for planar quadrilaterals only; use at your own risk if you really want to assess non-planar quadrilateral quality with those.
|
virtual |
These methods are deprecated. Use Get/SetSaveCellQuality() instead.
Formerly, SetRatio could be used to disable computation of the tetrahedral radius ratio so that volume alone could be computed. Now, cell quality is always computed, but you may decide not to store the result for each cell. This allows average cell quality of a mesh to be calculated without requiring per-cell storage.
|
virtual |
This variable controls whether or not cell quality is stored as cell data in the resulting mesh or discarded (leaving only the aggregate quality average of the entire mesh, recorded in the FieldData).
|
virtual |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToAspectBeta | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToAspectFrobenius | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToAspectGamma | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToAspectRatio | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToCollapseRatio | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToCondition | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToDistortion | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToEdgeRatio | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToJacobian | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToMinAngle | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToRadiusRatio | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToRelativeSizeSquared | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToScaledJacobian | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToShape | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToShapeAndSize | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTetQualityMeasureToVolume | ( | ) |
Set/Get the particular estimator used to measure the quality of tetrahedra. The default is VTK_QUALITY_RADIUS_RATIO (identical to Verdict's aspect ratio beta) and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_COLLAPSE_RATIO, VTK_QUALITY_ASPECT_BETA, VTK_QUALITY_ASPECT_GAMMA, VTK_QUALITY_VOLUME, VTK_QUALITY_CONDITION, VTK_QUALITY_JACOBIAN, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_SHAPE, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
|
virtual |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToArea | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToAspectFrobenius | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToAspectRatio | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToCondition | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToDistortion | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToEdgeRatio | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToMaxAngle | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToMinAngle | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToRadiusRatio | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToRelativeSizeSquared | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToScaledJacobian | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToShape | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
void Kitware.VTK.vtkMeshQuality.SetTriangleQualityMeasureToShapeAndSize | ( | ) |
Set/Get the particular estimator used to function the quality of triangles. The default is VTK_QUALITY_RADIUS_RATIO and valid values also include VTK_QUALITY_ASPECT_RATIO, VTK_QUALITY_ASPECT_FROBENIUS, and VTK_QUALITY_EDGE_RATIO, VTK_QUALITY_MIN_ANGLE, VTK_QUALITY_MAX_ANGLE, VTK_QUALITY_CONDITION, VTK_QUALITY_SCALED_JACOBIAN, VTK_QUALITY_RELATIVE_SIZE_SQUARED, VTK_QUALITY_SHAPE, VTK_QUALITY_SHAPE_AND_SIZE, and VTK_QUALITY_DISTORTION.
|
virtual |
These methods are deprecated. The functionality of computing cell volume is being removed until it can be computed for any 3D cell. (The previous implementation only worked for tetrahedra.)
For now, turning on the volume computation will put this filter into "compatibility mode," where tetrahedral cell volume is stored in first component of each output tuple and the radius ratio is stored in the second component. You may also use CompatibilityModeOn()/Off() to enter this mode. In this mode, cells other than tetrahedra will have report a volume of 0.0 (if volume computation is enabled).
By default, volume computation is disabled and compatibility mode is off, since it does not make a lot of sense for meshes with non-tetrahedral cells.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the Frobenius condition number of the transformation matrix from a regular tetrahedron to a tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The Frobenius aspect of a tetrahedron , when the reference element is regular, is:
, where
and
respectively denote the edge matrix of
and the entries of
.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the aspect ratio of a tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The aspect ratio of a tetrahedron is:
, where
and
respectively denote the greatest edge length and the inradius of
.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the edge ratio of a tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The edge ratio of a tetrahedron is:
, where
and
respectively denote the greatest and the smallest edge lengths of
.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) dihedral angle of a tetrahedron, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the radius ratio of a tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The radius ratio of a tetrahedron is:
, where
and
respectively denote the circumradius and the inradius of
.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the collapse ratio of a tetrahedron. The collapse ratio is a dimensionless number defined as the smallest ratio of the height of a vertex above its opposing triangle to the longest edge of that opposing triangle across all vertices of the tetrahedron. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the area of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the Frobenius condition number of the transformation matrix from an equilateral triangle to a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The Frobenius aspect of a triangle , when the reference element is equilateral, is:
, where
and
respectively denote the sum of the squared edge lengths and the area of
.
|
static |
This is a static function used to calculate the aspect ratio of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The aspect ratio of a triangle is:
, where
and
respectively denote the greatest edge length and the inradius of
.
|
static |
Description This is a static function used to calculate the condition number of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the distortion of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the edge ratio of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The edge ratio of a triangle is:
, where
and
respectively denote the greatest and the smallest edge lengths of
.
|
static |
This is a static function used to calculate the maximal (nonoriented) angle of a triangle, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the minimal (nonoriented) angle of a triangle, expressed in degrees. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the radius ratio of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function. The radius ratio of a triangle is:
, where
and
respectively denote the circumradius and the inradius of
.
|
static |
This is a static function used to calculate the square of the relative size of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the scaled Jacobian of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the shape of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
static |
This is a static function used to calculate the product of shape and relative size of a triangle. It assumes that you pass the correct type of cell – no type checking is performed because this method is called from the inner loop of the Execute() member function.
|
virtual |
These methods are deprecated. The functionality of computing cell volume is being removed until it can be computed for any 3D cell. (The previous implementation only worked for tetrahedra.)
For now, turning on the volume computation will put this filter into "compatibility mode," where tetrahedral cell volume is stored in first component of each output tuple and the radius ratio is stored in the second component. You may also use CompatibilityModeOn()/Off() to enter this mode. In this mode, cells other than tetrahedra will have report a volume of 0.0 (if volume computation is enabled).
By default, volume computation is disabled and compatibility mode is off, since it does not make a lot of sense for meshes with non-tetrahedral cells.
|
virtual |
These methods are deprecated. The functionality of computing cell volume is being removed until it can be computed for any 3D cell. (The previous implementation only worked for tetrahedra.)
For now, turning on the volume computation will put this filter into "compatibility mode," where tetrahedral cell volume is stored in first component of each output tuple and the radius ratio is stored in the second component. You may also use CompatibilityModeOn()/Off() to enter this mode. In this mode, cells other than tetrahedra will have report a volume of 0.0 (if volume computation is enabled).
By default, volume computation is disabled and compatibility mode is off, since it does not make a lot of sense for meshes with non-tetrahedral cells.
|
static |
Automatically generated type registration mechanics.
new const string Kitware.VTK.vtkMeshQuality.MRFullTypeName = "Kitware.VTK.vtkMeshQuality" |
Automatically generated type registration mechanics.