Primitive Type i32 []

The 32-bit signed integer type.

See also the std::i32 module.

Methods

impl i32

const fn min_value() -> i32

Returns the smallest value that can be represented by this integer type.

const fn max_value() -> i32

Returns the largest value that can be represented by this integer type.

fn from_str_radix(src: &str, radix: u32) -> Result<i32, ParseIntError>

Converts a string slice in a given base to an integer.

Leading and trailing whitespace represent an error.

Examples

Basic usage:

fn main() { assert_eq!(u32::from_str_radix("A", 16), Ok(10)); }
assert_eq!(u32::from_str_radix("A", 16), Ok(10));

fn count_ones(self) -> u32

Returns the number of ones in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b01001100u8; assert_eq!(n.count_ones(), 3); }
let n = 0b01001100u8;

assert_eq!(n.count_ones(), 3);

fn count_zeros(self) -> u32

Returns the number of zeros in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b01001100u8; assert_eq!(n.count_zeros(), 5); }
let n = 0b01001100u8;

assert_eq!(n.count_zeros(), 5);

fn leading_zeros(self) -> u32

Returns the number of leading zeros in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b0101000u16; assert_eq!(n.leading_zeros(), 10); }
let n = 0b0101000u16;

assert_eq!(n.leading_zeros(), 10);

fn trailing_zeros(self) -> u32

Returns the number of trailing zeros in the binary representation of self.

Examples

Basic usage:

fn main() { let n = 0b0101000u16; assert_eq!(n.trailing_zeros(), 3); }
let n = 0b0101000u16;

assert_eq!(n.trailing_zeros(), 3);

fn rotate_left(self, n: u32) -> i32

Shifts the bits to the left by a specified amount, n, wrapping the truncated bits to the end of the resulting integer.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0x3456789ABCDEF012u64; assert_eq!(n.rotate_left(12), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0x3456789ABCDEF012u64;

assert_eq!(n.rotate_left(12), m);

fn rotate_right(self, n: u32) -> i32

Shifts the bits to the right by a specified amount, n, wrapping the truncated bits to the beginning of the resulting integer.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xDEF0123456789ABCu64; assert_eq!(n.rotate_right(12), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0xDEF0123456789ABCu64;

assert_eq!(n.rotate_right(12), m);

fn swap_bytes(self) -> i32

Reverses the byte order of the integer.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xEFCDAB8967452301u64; assert_eq!(n.swap_bytes(), m); }
let n = 0x0123456789ABCDEFu64;
let m = 0xEFCDAB8967452301u64;

assert_eq!(n.swap_bytes(), m);

fn from_be(x: i32) -> i32

Converts an integer from big endian to the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(u64::from_be(n), n) } else { assert_eq!(u64::from_be(n), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "big") {
    assert_eq!(u64::from_be(n), n)
} else {
    assert_eq!(u64::from_be(n), n.swap_bytes())
}

fn from_le(x: i32) -> i32

Converts an integer from little endian to the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(u64::from_le(n), n) } else { assert_eq!(u64::from_le(n), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "little") {
    assert_eq!(u64::from_le(n), n)
} else {
    assert_eq!(u64::from_le(n), n.swap_bytes())
}

fn to_be(self) -> i32

Converts self to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}

fn to_le(self) -> i32

Converts self to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

Basic usage:

fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) } }
let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}

fn checked_add(self, other: i32) -> Option<i32>

Checked integer addition. Computes self + other, returning None if overflow occurred.

Examples

Basic usage:

fn main() { assert_eq!(5u16.checked_add(65530), Some(65535)); assert_eq!(6u16.checked_add(65530), None); }
assert_eq!(5u16.checked_add(65530), Some(65535));
assert_eq!(6u16.checked_add(65530), None);

fn checked_sub(self, other: i32) -> Option<i32>

Checked integer subtraction. Computes self - other, returning None if underflow occurred.

Examples

Basic usage:

fn main() { assert_eq!((-127i8).checked_sub(1), Some(-128)); assert_eq!((-128i8).checked_sub(1), None); }
assert_eq!((-127i8).checked_sub(1), Some(-128));
assert_eq!((-128i8).checked_sub(1), None);

fn checked_mul(self, other: i32) -> Option<i32>

Checked integer multiplication. Computes self * other, returning None if underflow or overflow occurred.

Examples

Basic usage:

fn main() { assert_eq!(5u8.checked_mul(51), Some(255)); assert_eq!(5u8.checked_mul(52), None); }
assert_eq!(5u8.checked_mul(51), Some(255));
assert_eq!(5u8.checked_mul(52), None);

fn checked_div(self, other: i32) -> Option<i32>

Checked integer division. Computes self / other, returning None if other == 0 or the operation results in underflow or overflow.

Examples

Basic usage:

fn main() { assert_eq!((-127i8).checked_div(-1), Some(127)); assert_eq!((-128i8).checked_div(-1), None); assert_eq!((1i8).checked_div(0), None); }
assert_eq!((-127i8).checked_div(-1), Some(127));
assert_eq!((-128i8).checked_div(-1), None);
assert_eq!((1i8).checked_div(0), None);

fn checked_rem(self, other: i32) -> Option<i32>

Checked integer remainder. Computes self % other, returning None if other == 0 or the operation results in underflow or overflow.

Examples

Basic usage:

fn main() { use std::i32; assert_eq!(5i32.checked_rem(2), Some(1)); assert_eq!(5i32.checked_rem(0), None); assert_eq!(i32::MIN.checked_rem(-1), None); }
use std::i32;

assert_eq!(5i32.checked_rem(2), Some(1));
assert_eq!(5i32.checked_rem(0), None);
assert_eq!(i32::MIN.checked_rem(-1), None);

fn checked_neg(self) -> Option<i32>

Checked negation. Computes !self, returning None if self == MIN.

Examples

Basic usage:

fn main() { use std::i32; assert_eq!(5i32.checked_neg(), Some(-5)); assert_eq!(i32::MIN.checked_neg(), None); }
use std::i32;

assert_eq!(5i32.checked_neg(), Some(-5));
assert_eq!(i32::MIN.checked_neg(), None);

fn checked_shl(self, rhs: u32) -> Option<i32>

Checked shift left. Computes self << rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

fn main() { assert_eq!(0x10i32.checked_shl(4), Some(0x100)); assert_eq!(0x10i32.checked_shl(33), None); }
assert_eq!(0x10i32.checked_shl(4), Some(0x100));
assert_eq!(0x10i32.checked_shl(33), None);

fn checked_shr(self, rhs: u32) -> Option<i32>

Checked shift right. Computes self >> rhs, returning None if rhs is larger than or equal to the number of bits in self.

Examples

Basic usage:

fn main() { assert_eq!(0x10i32.checked_shr(4), Some(0x1)); assert_eq!(0x10i32.checked_shr(33), None); }
assert_eq!(0x10i32.checked_shr(4), Some(0x1));
assert_eq!(0x10i32.checked_shr(33), None);

fn saturating_add(self, other: i32) -> i32

Saturating integer addition. Computes self + other, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

fn main() { assert_eq!(100i8.saturating_add(1), 101); assert_eq!(100i8.saturating_add(127), 127); }
assert_eq!(100i8.saturating_add(1), 101);
assert_eq!(100i8.saturating_add(127), 127);

fn saturating_sub(self, other: i32) -> i32

Saturating integer subtraction. Computes self - other, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

fn main() { assert_eq!(100i8.saturating_sub(127), -27); assert_eq!((-100i8).saturating_sub(127), -128); }
assert_eq!(100i8.saturating_sub(127), -27);
assert_eq!((-100i8).saturating_sub(127), -128);

fn saturating_mul(self, other: i32) -> i32

Saturating integer multiplication. Computes self * other, saturating at the numeric bounds instead of overflowing.

Examples

Basic usage:

fn main() { use std::i32; assert_eq!(100i32.saturating_mul(127), 12700); assert_eq!((1i32 << 23).saturating_mul(1 << 23), i32::MAX); assert_eq!((-1i32 << 23).saturating_mul(1 << 23), i32::MIN); }
use std::i32;

assert_eq!(100i32.saturating_mul(127), 12700);
assert_eq!((1i32 << 23).saturating_mul(1 << 23), i32::MAX);
assert_eq!((-1i32 << 23).saturating_mul(1 << 23), i32::MIN);

fn wrapping_add(self, rhs: i32) -> i32

Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of the type.

Examples

Basic usage:

fn main() { assert_eq!(100i8.wrapping_add(27), 127); assert_eq!(100i8.wrapping_add(127), -29); }
assert_eq!(100i8.wrapping_add(27), 127);
assert_eq!(100i8.wrapping_add(127), -29);

fn wrapping_sub(self, rhs: i32) -> i32

Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary of the type.

Examples

Basic usage:

fn main() { assert_eq!(0i8.wrapping_sub(127), -127); assert_eq!((-2i8).wrapping_sub(127), 127); }
assert_eq!(0i8.wrapping_sub(127), -127);
assert_eq!((-2i8).wrapping_sub(127), 127);

fn wrapping_mul(self, rhs: i32) -> i32

Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary of the type.

Examples

Basic usage:

fn main() { assert_eq!(10i8.wrapping_mul(12), 120); assert_eq!(11i8.wrapping_mul(12), -124); }
assert_eq!(10i8.wrapping_mul(12), 120);
assert_eq!(11i8.wrapping_mul(12), -124);

fn wrapping_div(self, rhs: i32) -> i32

Wrapping (modular) division. Computes self / other, wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one divides MIN / -1 on a signed type (where MIN is the negative minimal value for the type); this is equivalent to -MIN, a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

fn main() { assert_eq!(100u8.wrapping_div(10), 10); assert_eq!((-128i8).wrapping_div(-1), -128); }
assert_eq!(100u8.wrapping_div(10), 10);
assert_eq!((-128i8).wrapping_div(-1), -128);

fn wrapping_rem(self, rhs: i32) -> i32

Wrapping (modular) remainder. Computes self % other, wrapping around at the boundary of the type.

Such wrap-around never actually occurs mathematically; implementation artifacts make x % y invalid for MIN / -1 on a signed type (where MIN is the negative minimal value). In such a case, this function returns 0.

Panics

This function will panic if rhs is 0.

Examples

Basic usage:

fn main() { assert_eq!(100i8.wrapping_rem(10), 0); assert_eq!((-128i8).wrapping_rem(-1), 0); }
assert_eq!(100i8.wrapping_rem(10), 0);
assert_eq!((-128i8).wrapping_rem(-1), 0);

fn wrapping_neg(self) -> i32

Wrapping (modular) negation. Computes -self, wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one negates MIN on a signed type (where MIN is the negative minimal value for the type); this is a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

Examples

Basic usage:

fn main() { assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128); }
assert_eq!(100i8.wrapping_neg(), -100);
assert_eq!((-128i8).wrapping_neg(), -128);

fn wrapping_shl(self, rhs: u32) -> i32

Panic-free bitwise shift-left; yields self << mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Examples

Basic usage:

fn main() { assert_eq!(1u8.wrapping_shl(7), 128); assert_eq!(1u8.wrapping_shl(8), 1); }
assert_eq!(1u8.wrapping_shl(7), 128);
assert_eq!(1u8.wrapping_shl(8), 1);

fn wrapping_shr(self, rhs: u32) -> i32

Panic-free bitwise shift-right; yields self >> mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

Examples

Basic usage:

fn main() { assert_eq!(128u8.wrapping_shr(7), 1); assert_eq!(128u8.wrapping_shr(8), 128); }
assert_eq!(128u8.wrapping_shr(7), 1);
assert_eq!(128u8.wrapping_shr(8), 128);

fn overflowing_add(self, rhs: i32) -> (i32, bool)

Calculates self + rhs

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

fn main() { use std::i32; assert_eq!(5i32.overflowing_add(2), (7, false)); assert_eq!(i32::MAX.overflowing_add(1), (i32::MIN, true)); }
use std::i32;

assert_eq!(5i32.overflowing_add(2), (7, false));
assert_eq!(i32::MAX.overflowing_add(1), (i32::MIN, true));

fn overflowing_sub(self, rhs: i32) -> (i32, bool)

Calculates self - rhs

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

fn main() { use std::i32; assert_eq!(5i32.overflowing_sub(2), (3, false)); assert_eq!(i32::MIN.overflowing_sub(1), (i32::MAX, true)); }
use std::i32;

assert_eq!(5i32.overflowing_sub(2), (3, false));
assert_eq!(i32::MIN.overflowing_sub(1), (i32::MAX, true));

fn overflowing_mul(self, rhs: i32) -> (i32, bool)

Calculates the multiplication of self and rhs.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

Examples

Basic usage

fn main() { assert_eq!(5i32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true)); }
assert_eq!(5i32.overflowing_mul(2), (10, false));
assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));

fn overflowing_div(self, rhs: i32) -> (i32, bool)

Calculates the divisor when self is divided by rhs.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.

Panics

This function will panic if rhs is 0.

Examples

Basic usage

fn main() { use std::i32; assert_eq!(5i32.overflowing_div(2), (2, false)); assert_eq!(i32::MIN.overflowing_div(-1), (i32::MIN, true)); }
use std::i32;

assert_eq!(5i32.overflowing_div(2), (2, false));
assert_eq!(i32::MIN.overflowing_div(-1), (i32::MIN, true));

fn overflowing_rem(self, rhs: i32) -> (i32, bool)

Calculates the remainder when self is divided by rhs.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.

Panics

This function will panic if rhs is 0.

Examples

Basic usage

fn main() { use std::i32; assert_eq!(5i32.overflowing_rem(2), (1, false)); assert_eq!(i32::MIN.overflowing_rem(-1), (0, true)); }
use std::i32;

assert_eq!(5i32.overflowing_rem(2), (1, false));
assert_eq!(i32::MIN.overflowing_rem(-1), (0, true));

fn overflowing_neg(self) -> (i32, bool)

Negates self, overflowing if this is equal to the minimum value.

Returns a tuple of the negated version of self along with a boolean indicating whether an overflow happened. If self is the minimum value (e.g. i32::MIN for values of type i32), then the minimum value will be returned again and true will be returned for an overflow happening.

Examples

Basic usage

fn main() { use std::i32; assert_eq!(2i32.overflowing_neg(), (-2, false)); assert_eq!(i32::MIN.overflowing_neg(), (i32::MIN, true)); }
use std::i32;

assert_eq!(2i32.overflowing_neg(), (-2, false));
assert_eq!(i32::MIN.overflowing_neg(), (i32::MIN, true));

fn overflowing_shl(self, rhs: u32) -> (i32, bool)

Shifts self left by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage

fn main() { assert_eq!(0x10i32.overflowing_shl(4), (0x100, false)); assert_eq!(0x10i32.overflowing_shl(36), (0x100, true)); }
assert_eq!(0x10i32.overflowing_shl(4), (0x100, false));
assert_eq!(0x10i32.overflowing_shl(36), (0x100, true));

fn overflowing_shr(self, rhs: u32) -> (i32, bool)

Shifts self right by rhs bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

Examples

Basic usage

fn main() { assert_eq!(0x10i32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10i32.overflowing_shr(36), (0x1, true)); }
assert_eq!(0x10i32.overflowing_shr(4), (0x1, false));
assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));

fn pow(self, exp: u32) -> i32

Raises self to the power of exp, using exponentiation by squaring.

Examples

Basic usage:

fn main() { let x: i32 = 2; // or any other integer type assert_eq!(x.pow(4), 16); }
let x: i32 = 2; // or any other integer type

assert_eq!(x.pow(4), 16);

fn abs(self) -> i32

Computes the absolute value of self.

Overflow behavior

The absolute value of i32::min_value() cannot be represented as an i32, and attempting to calculate it will cause an overflow. This means that code in debug mode will trigger a panic on this case and optimized code will return i32::min_value() without a panic.

Examples

Basic usage:

fn main() { assert_eq!(10i8.abs(), 10); assert_eq!((-10i8).abs(), 10); }
assert_eq!(10i8.abs(), 10);
assert_eq!((-10i8).abs(), 10);

fn signum(self) -> i32

Returns a number representing sign of self.

  • 0 if the number is zero
  • 1 if the number is positive
  • -1 if the number is negative

Examples

Basic usage:

fn main() { assert_eq!(10i8.signum(), 1); assert_eq!(0i8.signum(), 0); assert_eq!((-10i8).signum(), -1); }
assert_eq!(10i8.signum(), 1);
assert_eq!(0i8.signum(), 0);
assert_eq!((-10i8).signum(), -1);

fn is_positive(self) -> bool

Returns true if self is positive and false if the number is zero or negative.

Examples

Basic usage:

fn main() { assert!(10i8.is_positive()); assert!(!(-10i8).is_positive()); }
assert!(10i8.is_positive());
assert!(!(-10i8).is_positive());

fn is_negative(self) -> bool

Returns true if self is negative and false if the number is zero or positive.

Examples

Basic usage:

fn main() { assert!((-10i8).is_negative()); assert!(!10i8.is_negative()); }
assert!((-10i8).is_negative());
assert!(!10i8.is_negative());

Trait Implementations

impl OverflowingOps for i32

fn overflowing_add(self, rhs: i32) -> (i32, bool)

fn overflowing_sub(self, rhs: i32) -> (i32, bool)

fn overflowing_mul(self, rhs: i32) -> (i32, bool)

fn overflowing_div(self, rhs: i32) -> (i32, bool)

fn overflowing_rem(self, rhs: i32) -> (i32, bool)

fn overflowing_shl(self, rhs: u32) -> (i32, bool)

fn overflowing_shr(self, rhs: u32) -> (i32, bool)

fn overflowing_neg(self) -> (i32, bool)

impl Zero for i32

fn zero() -> i32

impl One for i32

fn one() -> i32

impl FromStr for i32

type Err = ParseIntError

fn from_str(src: &str) -> Result<i32, ParseIntError>

impl From<i8> for i32

fn from(small: i8) -> i32

impl From<i16> for i32

fn from(small: i16) -> i32

impl From<u8> for i32

fn from(small: u8) -> i32

impl From<u16> for i32

fn from(small: u16) -> i32

impl Zeroable for i32

impl Add<i32> for i32

type Output = i32

fn add(self, other: i32) -> i32

impl<'a> Add<i32> for &'a i32

type Output = i32::Output

fn add(self, other: i32) -> i32::Output

impl<'a> Add<&'a i32> for i32

type Output = i32::Output

fn add(self, other: &'a i32) -> i32::Output

impl<'a, 'b> Add<&'a i32> for &'b i32

type Output = i32::Output

fn add(self, other: &'a i32) -> i32::Output

impl Sub<i32> for i32

type Output = i32

fn sub(self, other: i32) -> i32

impl<'a> Sub<i32> for &'a i32

type Output = i32::Output

fn sub(self, other: i32) -> i32::Output

impl<'a> Sub<&'a i32> for i32

type Output = i32::Output

fn sub(self, other: &'a i32) -> i32::Output

impl<'a, 'b> Sub<&'a i32> for &'b i32

type Output = i32::Output

fn sub(self, other: &'a i32) -> i32::Output

impl Mul<i32> for i32

type Output = i32

fn mul(self, other: i32) -> i32

impl<'a> Mul<i32> for &'a i32

type Output = i32::Output

fn mul(self, other: i32) -> i32::Output

impl<'a> Mul<&'a i32> for i32

type Output = i32::Output

fn mul(self, other: &'a i32) -> i32::Output

impl<'a, 'b> Mul<&'a i32> for &'b i32

type Output = i32::Output

fn mul(self, other: &'a i32) -> i32::Output

impl Div<i32> for i32

This operation rounds towards zero, truncating any fractional part of the exact result.

type Output = i32

fn div(self, other: i32) -> i32

impl<'a> Div<i32> for &'a i32

type Output = i32::Output

fn div(self, other: i32) -> i32::Output

impl<'a> Div<&'a i32> for i32

type Output = i32::Output

fn div(self, other: &'a i32) -> i32::Output

impl<'a, 'b> Div<&'a i32> for &'b i32

type Output = i32::Output

fn div(self, other: &'a i32) -> i32::Output

impl Rem<i32> for i32

This operation satisfies n % d == n - (n / d) * d. The result has the same sign as the left operand.

type Output = i32

fn rem(self, other: i32) -> i32

impl<'a> Rem<i32> for &'a i32

type Output = i32::Output

fn rem(self, other: i32) -> i32::Output

impl<'a> Rem<&'a i32> for i32

type Output = i32::Output

fn rem(self, other: &'a i32) -> i32::Output

impl<'a, 'b> Rem<&'a i32> for &'b i32

type Output = i32::Output

fn rem(self, other: &'a i32) -> i32::Output

impl Neg for i32

type Output = i32

fn neg(self) -> i32

impl<'a> Neg for &'a i32

type Output = i32::Output

fn neg(self) -> i32::Output

impl Not for i32

type Output = i32

fn not(self) -> i32

impl<'a> Not for &'a i32

type Output = i32::Output

fn not(self) -> i32::Output

impl BitAnd<i32> for i32

type Output = i32

fn bitand(self, rhs: i32) -> i32

impl<'a> BitAnd<i32> for &'a i32

type Output = i32::Output

fn bitand(self, other: i32) -> i32::Output

impl<'a> BitAnd<&'a i32> for i32

type Output = i32::Output

fn bitand(self, other: &'a i32) -> i32::Output

impl<'a, 'b> BitAnd<&'a i32> for &'b i32

type Output = i32::Output

fn bitand(self, other: &'a i32) -> i32::Output

impl BitOr<i32> for i32

type Output = i32

fn bitor(self, rhs: i32) -> i32

impl<'a> BitOr<i32> for &'a i32

type Output = i32::Output

fn bitor(self, other: i32) -> i32::Output

impl<'a> BitOr<&'a i32> for i32

type Output = i32::Output

fn bitor(self, other: &'a i32) -> i32::Output

impl<'a, 'b> BitOr<&'a i32> for &'b i32

type Output = i32::Output

fn bitor(self, other: &'a i32) -> i32::Output

impl BitXor<i32> for i32

type Output = i32

fn bitxor(self, other: i32) -> i32

impl<'a> BitXor<i32> for &'a i32

type Output = i32::Output

fn bitxor(self, other: i32) -> i32::Output

impl<'a> BitXor<&'a i32> for i32

type Output = i32::Output

fn bitxor(self, other: &'a i32) -> i32::Output

impl<'a, 'b> BitXor<&'a i32> for &'b i32

type Output = i32::Output

fn bitxor(self, other: &'a i32) -> i32::Output

impl Shl<u8> for i32

type Output = i32

fn shl(self, other: u8) -> i32

impl<'a> Shl<u8> for &'a i32

type Output = i32::Output

fn shl(self, other: u8) -> i32::Output

impl<'a> Shl<&'a u8> for i32

type Output = i32::Output

fn shl(self, other: &'a u8) -> i32::Output

impl<'a, 'b> Shl<&'a u8> for &'b i32

type Output = i32::Output

fn shl(self, other: &'a u8) -> i32::Output

impl Shl<u16> for i32

type Output = i32

fn shl(self, other: u16) -> i32

impl<'a> Shl<u16> for &'a i32

type Output = i32::Output

fn shl(self, other: u16) -> i32::Output

impl<'a> Shl<&'a u16> for i32

type Output = i32::Output

fn shl(self, other: &'a u16) -> i32::Output

impl<'a, 'b> Shl<&'a u16> for &'b i32

type Output = i32::Output

fn shl(self, other: &'a u16) -> i32::Output

impl Shl<u32> for i32

type Output = i32

fn shl(self, other: u32) -> i32

impl<'a> Shl<u32> for &'a i32

type Output = i32::Output

fn shl(self, other: u32) -> i32::Output

impl<'a> Shl<&'a u32> for i32

type Output = i32::Output

fn shl(self, other: &'a u32) -> i32::Output

impl<'a, 'b> Shl<&'a u32> for &'b i32

type Output = i32::Output

fn shl(self, other: &'a u32) -> i32::Output

impl Shl<u64> for i32

type Output = i32

fn shl(self, other: u64) -> i32

impl<'a> Shl<u64> for &'a i32

type Output = i32::Output

fn shl(self, other: u64) -> i32::Output

impl<'a> Shl<&'a u64> for i32

type Output = i32::Output

fn shl(self, other: &'a u64) -> i32::Output

impl<'a, 'b> Shl<&'a u64> for &'b i32

type Output = i32::Output

fn shl(self, other: &'a u64) -> i32::Output

impl Shl<usize> for i32

type Output = i32

fn shl(self, other: usize) -> i32

impl<'a> Shl<usize> for &'a i32

type Output = i32::Output

fn shl(self, other: usize) -> i32::Output

impl<'a> Shl<&'a usize> for i32

type Output = i32::Output

fn shl(self, other: &'a usize) -> i32::Output

impl<'a, 'b> Shl<&'a usize> for &'b i32

type Output = i32::Output

fn shl(self, other: &'a usize) -> i32::Output

impl Shl<i8> for i32

type Output = i32

fn shl(self, other: i8) -> i32

impl<'a> Shl<i8> for &'a i32

type Output = i32::Output

fn shl(self, other: i8) -> i32::Output

impl<'a> Shl<&'a i8> for i32

type Output = i32::Output

fn shl(self, other: &'a i8) -> i32::Output

impl<'a, 'b> Shl<&'a i8> for &'b i32

type Output = i32::Output

fn shl(self, other: &'a i8) -> i32::Output

impl Shl<i16> for i32

type Output = i32

fn shl(self, other: i16) -> i32

impl<'a> Shl<i16> for &'a i32

type Output = i32::Output

fn shl(self, other: i16) -> i32::Output

impl<'a> Shl<&'a i16> for i32

type Output = i32::Output

fn shl(self, other: &'a i16) -> i32::Output

impl<'a, 'b> Shl<&'a i16> for &'b i32

type Output = i32::Output

fn shl(self, other: &'a i16) -> i32::Output

impl Shl<i32> for i32

type Output = i32

fn shl(self, other: i32) -> i32

impl<'a> Shl<i32> for &'a i32

type Output = i32::Output

fn shl(self, other: i32) -> i32::Output

impl<'a> Shl<&'a i32> for i32

type Output = i32::Output

fn shl(self, other: &'a i32) -> i32::Output

impl<'a, 'b> Shl<&'a i32> for &'b i32

type Output = i32::Output

fn shl(self, other: &'a i32) -> i32::Output

impl Shl<i64> for i32

type Output = i32

fn shl(self, other: i64) -> i32

impl<'a> Shl<i64> for &'a i32

type Output = i32::Output

fn shl(self, other: i64) -> i32::Output

impl<'a> Shl<&'a i64> for i32

type Output = i32::Output

fn shl(self, other: &'a i64) -> i32::Output

impl<'a, 'b> Shl<&'a i64> for &'b i32

type Output = i32::Output

fn shl(self, other: &'a i64) -> i32::Output

impl Shl<isize> for i32

type Output = i32

fn shl(self, other: isize) -> i32

impl<'a> Shl<isize> for &'a i32

type Output = i32::Output

fn shl(self, other: isize) -> i32::Output

impl<'a> Shl<&'a isize> for i32

type Output = i32::Output

fn shl(self, other: &'a isize) -> i32::Output

impl<'a, 'b> Shl<&'a isize> for &'b i32

type Output = i32::Output

fn shl(self, other: &'a isize) -> i32::Output

impl Shr<u8> for i32

type Output = i32

fn shr(self, other: u8) -> i32

impl<'a> Shr<u8> for &'a i32

type Output = i32::Output

fn shr(self, other: u8) -> i32::Output

impl<'a> Shr<&'a u8> for i32

type Output = i32::Output

fn shr(self, other: &'a u8) -> i32::Output

impl<'a, 'b> Shr<&'a u8> for &'b i32

type Output = i32::Output

fn shr(self, other: &'a u8) -> i32::Output

impl Shr<u16> for i32

type Output = i32

fn shr(self, other: u16) -> i32

impl<'a> Shr<u16> for &'a i32

type Output = i32::Output

fn shr(self, other: u16) -> i32::Output

impl<'a> Shr<&'a u16> for i32

type Output = i32::Output

fn shr(self, other: &'a u16) -> i32::Output

impl<'a, 'b> Shr<&'a u16> for &'b i32

type Output = i32::Output

fn shr(self, other: &'a u16) -> i32::Output

impl Shr<u32> for i32

type Output = i32

fn shr(self, other: u32) -> i32

impl<'a> Shr<u32> for &'a i32

type Output = i32::Output

fn shr(self, other: u32) -> i32::Output

impl<'a> Shr<&'a u32> for i32

type Output = i32::Output

fn shr(self, other: &'a u32) -> i32::Output

impl<'a, 'b> Shr<&'a u32> for &'b i32

type Output = i32::Output

fn shr(self, other: &'a u32) -> i32::Output

impl Shr<u64> for i32

type Output = i32

fn shr(self, other: u64) -> i32

impl<'a> Shr<u64> for &'a i32

type Output = i32::Output

fn shr(self, other: u64) -> i32::Output

impl<'a> Shr<&'a u64> for i32

type Output = i32::Output

fn shr(self, other: &'a u64) -> i32::Output

impl<'a, 'b> Shr<&'a u64> for &'b i32

type Output = i32::Output

fn shr(self, other: &'a u64) -> i32::Output

impl Shr<usize> for i32

type Output = i32

fn shr(self, other: usize) -> i32

impl<'a> Shr<usize> for &'a i32

type Output = i32::Output

fn shr(self, other: usize) -> i32::Output

impl<'a> Shr<&'a usize> for i32

type Output = i32::Output

fn shr(self, other: &'a usize) -> i32::Output

impl<'a, 'b> Shr<&'a usize> for &'b i32

type Output = i32::Output

fn shr(self, other: &'a usize) -> i32::Output

impl Shr<i8> for i32

type Output = i32

fn shr(self, other: i8) -> i32

impl<'a> Shr<i8> for &'a i32

type Output = i32::Output

fn shr(self, other: i8) -> i32::Output

impl<'a> Shr<&'a i8> for i32

type Output = i32::Output

fn shr(self, other: &'a i8) -> i32::Output

impl<'a, 'b> Shr<&'a i8> for &'b i32

type Output = i32::Output

fn shr(self, other: &'a i8) -> i32::Output

impl Shr<i16> for i32

type Output = i32

fn shr(self, other: i16) -> i32

impl<'a> Shr<i16> for &'a i32

type Output = i32::Output

fn shr(self, other: i16) -> i32::Output

impl<'a> Shr<&'a i16> for i32

type Output = i32::Output

fn shr(self, other: &'a i16) -> i32::Output

impl<'a, 'b> Shr<&'a i16> for &'b i32

type Output = i32::Output

fn shr(self, other: &'a i16) -> i32::Output

impl Shr<i32> for i32

type Output = i32

fn shr(self, other: i32) -> i32

impl<'a> Shr<i32> for &'a i32

type Output = i32::Output

fn shr(self, other: i32) -> i32::Output

impl<'a> Shr<&'a i32> for i32

type Output = i32::Output

fn shr(self, other: &'a i32) -> i32::Output

impl<'a, 'b> Shr<&'a i32> for &'b i32

type Output = i32::Output

fn shr(self, other: &'a i32) -> i32::Output

impl Shr<i64> for i32

type Output = i32

fn shr(self, other: i64) -> i32

impl<'a> Shr<i64> for &'a i32

type Output = i32::Output

fn shr(self, other: i64) -> i32::Output

impl<'a> Shr<&'a i64> for i32

type Output = i32::Output

fn shr(self, other: &'a i64) -> i32::Output

impl<'a, 'b> Shr<&'a i64> for &'b i32

type Output = i32::Output

fn shr(self, other: &'a i64) -> i32::Output

impl Shr<isize> for i32

type Output = i32

fn shr(self, other: isize) -> i32

impl<'a> Shr<isize> for &'a i32

type Output = i32::Output

fn shr(self, other: isize) -> i32::Output

impl<'a> Shr<&'a isize> for i32

type Output = i32::Output

fn shr(self, other: &'a isize) -> i32::Output

impl<'a, 'b> Shr<&'a isize> for &'b i32

type Output = i32::Output

fn shr(self, other: &'a isize) -> i32::Output

impl AddAssign<i32> for i32

fn add_assign(&mut self, other: i32)

impl SubAssign<i32> for i32

fn sub_assign(&mut self, other: i32)

impl MulAssign<i32> for i32

fn mul_assign(&mut self, other: i32)

impl DivAssign<i32> for i32

fn div_assign(&mut self, other: i32)

impl RemAssign<i32> for i32

fn rem_assign(&mut self, other: i32)

impl BitAndAssign<i32> for i32

fn bitand_assign(&mut self, other: i32)

impl BitOrAssign<i32> for i32

fn bitor_assign(&mut self, other: i32)

impl BitXorAssign<i32> for i32

fn bitxor_assign(&mut self, other: i32)

impl ShlAssign<u8> for i32

fn shl_assign(&mut self, other: u8)

impl ShlAssign<u16> for i32

fn shl_assign(&mut self, other: u16)

impl ShlAssign<u32> for i32

fn shl_assign(&mut self, other: u32)

impl ShlAssign<u64> for i32

fn shl_assign(&mut self, other: u64)

impl ShlAssign<usize> for i32

fn shl_assign(&mut self, other: usize)

impl ShlAssign<i8> for i32

fn shl_assign(&mut self, other: i8)

impl ShlAssign<i16> for i32

fn shl_assign(&mut self, other: i16)

impl ShlAssign<i32> for i32

fn shl_assign(&mut self, other: i32)

impl ShlAssign<i64> for i32

fn shl_assign(&mut self, other: i64)

impl ShlAssign<isize> for i32

fn shl_assign(&mut self, other: isize)

impl ShrAssign<u8> for i32

fn shr_assign(&mut self, other: u8)

impl ShrAssign<u16> for i32

fn shr_assign(&mut self, other: u16)

impl ShrAssign<u32> for i32

fn shr_assign(&mut self, other: u32)

impl ShrAssign<u64> for i32

fn shr_assign(&mut self, other: u64)

impl ShrAssign<usize> for i32

fn shr_assign(&mut self, other: usize)

impl ShrAssign<i8> for i32

fn shr_assign(&mut self, other: i8)

impl ShrAssign<i16> for i32

fn shr_assign(&mut self, other: i16)

impl ShrAssign<i32> for i32

fn shr_assign(&mut self, other: i32)

impl ShrAssign<i64> for i32

fn shr_assign(&mut self, other: i64)

impl ShrAssign<isize> for i32

fn shr_assign(&mut self, other: isize)

impl PartialEq<i32> for i32

fn eq(&self, other: &i32) -> bool

fn ne(&self, other: &i32) -> bool

impl Eq for i32

impl PartialOrd<i32> for i32

fn partial_cmp(&self, other: &i32) -> Option<Ordering>

fn lt(&self, other: &i32) -> bool

fn le(&self, other: &i32) -> bool

fn ge(&self, other: &i32) -> bool

fn gt(&self, other: &i32) -> bool

impl Ord for i32

fn cmp(&self, other: &i32) -> Ordering

impl Clone for i32

fn clone(&self) -> i32

fn clone_from(&mut self, source: &Self)

impl Default for i32

fn default() -> i32

impl Step for i32

fn step(&self, by: &i32) -> Option<i32>

fn steps_between(start: &i32, end: &i32, by: &i32) -> Option<usize>

impl Hash for i32

fn hash<H>(&self, state: &mut H) where H: Hasher

fn hash_slice<H>(data: &[i32], state: &mut H) where H: Hasher

impl Binary for i32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Octal for i32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl LowerHex for i32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl UpperHex for i32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Debug for i32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl Display for i32

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>