112 SUBROUTINE zgetc2( N, A, LDA, IPIV, JPIV, INFO )
123 INTEGER IPIV( * ), JPIV( * )
124 COMPLEX*16 A( lda, * )
130 DOUBLE PRECISION ZERO, ONE
131 parameter( zero = 0.0d+0, one = 1.0d+0 )
134 INTEGER I, IP, IPV, J, JP, JPV
135 DOUBLE PRECISION BIGNUM, EPS, SMIN, SMLNUM, XMAX
141 DOUBLE PRECISION DLAMCH
145 INTRINSIC abs, dcmplx, max
153 smlnum = dlamch(
'S' ) / eps
154 bignum = one / smlnum
155 CALL dlabad( smlnum, bignum )
167 IF( abs( a( ip, jp ) ).GE.xmax )
THEN
168 xmax = abs( a( ip, jp ) )
175 $ smin = max( eps*xmax, smlnum )
180 $
CALL zswap( n, a( ipv, 1 ), lda, a( i, 1 ), lda )
186 $
CALL zswap( n, a( 1, jpv ), 1, a( 1, i ), 1 )
191 IF( abs( a( i, i ) ).LT.smin )
THEN
193 a( i, i ) = dcmplx( smin, zero )
196 a( j, i ) = a( j, i ) / a( i, i )
198 CALL zgeru( n-i, n-i, -dcmplx( one ), a( i+1, i ), 1,
199 $ a( i, i+1 ), lda, a( i+1, i+1 ), lda )
202 IF( abs( a( n, n ) ).LT.smin )
THEN
204 a( n, n ) = dcmplx( smin, zero )
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
subroutine zgetc2(N, A, LDA, IPIV, JPIV, INFO)
ZGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix...
subroutine dlabad(SMALL, LARGE)
DLABAD
subroutine zgeru(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
ZGERU