LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
zunmrq.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zunmrq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
 ZUNMRQ More...
 

Function/Subroutine Documentation

subroutine zunmrq ( character  SIDE,
character  TRANS,
integer  M,
integer  N,
integer  K,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( ldc, * )  C,
integer  LDC,
complex*16, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)

ZUNMRQ

Download ZUNMRQ + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZUNMRQ overwrites the general complex M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'C':      Q**H * C       C * Q**H

 where Q is a complex unitary matrix defined as the product of k
 elementary reflectors

       Q = H(1)**H H(2)**H . . . H(k)**H

 as returned by ZGERQF. Q is of order M if SIDE = 'L' and of order N
 if SIDE = 'R'.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**H from the Left;
          = 'R': apply Q or Q**H from the Right.
[in]TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'C':  Transpose, apply Q**H.
[in]M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
[in]A
          A is COMPLEX*16 array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          ZGERQF in the last k rows of its array argument A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).
[in]TAU
          TAU is COMPLEX*16 array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by ZGERQF.
[in,out]C
          C is COMPLEX*16 array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
[out]WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
          blocksize.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 171 of file zunmrq.f.

171 *
172 * -- LAPACK computational routine (version 3.4.0) --
173 * -- LAPACK is a software package provided by Univ. of Tennessee, --
174 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175 * November 2011
176 *
177 * .. Scalar Arguments ..
178  CHARACTER side, trans
179  INTEGER info, k, lda, ldc, lwork, m, n
180 * ..
181 * .. Array Arguments ..
182  COMPLEX*16 a( lda, * ), c( ldc, * ), tau( * ), work( * )
183 * ..
184 *
185 * =====================================================================
186 *
187 * .. Parameters ..
188  INTEGER nbmax, ldt
189  parameter( nbmax = 64, ldt = nbmax+1 )
190 * ..
191 * .. Local Scalars ..
192  LOGICAL left, lquery, notran
193  CHARACTER transt
194  INTEGER i, i1, i2, i3, ib, iinfo, iws, ldwork, lwkopt,
195  $ mi, nb, nbmin, ni, nq, nw
196 * ..
197 * .. Local Arrays ..
198  COMPLEX*16 t( ldt, nbmax )
199 * ..
200 * .. External Functions ..
201  LOGICAL lsame
202  INTEGER ilaenv
203  EXTERNAL lsame, ilaenv
204 * ..
205 * .. External Subroutines ..
206  EXTERNAL xerbla, zlarfb, zlarft, zunmr2
207 * ..
208 * .. Intrinsic Functions ..
209  INTRINSIC max, min
210 * ..
211 * .. Executable Statements ..
212 *
213 * Test the input arguments
214 *
215  info = 0
216  left = lsame( side, 'L' )
217  notran = lsame( trans, 'N' )
218  lquery = ( lwork.EQ.-1 )
219 *
220 * NQ is the order of Q and NW is the minimum dimension of WORK
221 *
222  IF( left ) THEN
223  nq = m
224  nw = max( 1, n )
225  ELSE
226  nq = n
227  nw = max( 1, m )
228  END IF
229  IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
230  info = -1
231  ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
232  info = -2
233  ELSE IF( m.LT.0 ) THEN
234  info = -3
235  ELSE IF( n.LT.0 ) THEN
236  info = -4
237  ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
238  info = -5
239  ELSE IF( lda.LT.max( 1, k ) ) THEN
240  info = -7
241  ELSE IF( ldc.LT.max( 1, m ) ) THEN
242  info = -10
243  END IF
244 *
245  IF( info.EQ.0 ) THEN
246  IF( m.EQ.0 .OR. n.EQ.0 ) THEN
247  lwkopt = 1
248  ELSE
249 *
250 * Determine the block size. NB may be at most NBMAX, where
251 * NBMAX is used to define the local array T.
252 *
253  nb = min( nbmax, ilaenv( 1, 'ZUNMRQ', side // trans, m, n,
254  $ k, -1 ) )
255  lwkopt = nw*nb
256  END IF
257  work( 1 ) = lwkopt
258 *
259  IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
260  info = -12
261  END IF
262  END IF
263 *
264  IF( info.NE.0 ) THEN
265  CALL xerbla( 'ZUNMRQ', -info )
266  RETURN
267  ELSE IF( lquery ) THEN
268  RETURN
269  END IF
270 *
271 * Quick return if possible
272 *
273  IF( m.EQ.0 .OR. n.EQ.0 ) THEN
274  RETURN
275  END IF
276 *
277  nbmin = 2
278  ldwork = nw
279  IF( nb.GT.1 .AND. nb.LT.k ) THEN
280  iws = nw*nb
281  IF( lwork.LT.iws ) THEN
282  nb = lwork / ldwork
283  nbmin = max( 2, ilaenv( 2, 'ZUNMRQ', side // trans, m, n, k,
284  $ -1 ) )
285  END IF
286  ELSE
287  iws = nw
288  END IF
289 *
290  IF( nb.LT.nbmin .OR. nb.GE.k ) THEN
291 *
292 * Use unblocked code
293 *
294  CALL zunmr2( side, trans, m, n, k, a, lda, tau, c, ldc, work,
295  $ iinfo )
296  ELSE
297 *
298 * Use blocked code
299 *
300  IF( ( left .AND. .NOT.notran ) .OR.
301  $ ( .NOT.left .AND. notran ) ) THEN
302  i1 = 1
303  i2 = k
304  i3 = nb
305  ELSE
306  i1 = ( ( k-1 ) / nb )*nb + 1
307  i2 = 1
308  i3 = -nb
309  END IF
310 *
311  IF( left ) THEN
312  ni = n
313  ELSE
314  mi = m
315  END IF
316 *
317  IF( notran ) THEN
318  transt = 'C'
319  ELSE
320  transt = 'N'
321  END IF
322 *
323  DO 10 i = i1, i2, i3
324  ib = min( nb, k-i+1 )
325 *
326 * Form the triangular factor of the block reflector
327 * H = H(i+ib-1) . . . H(i+1) H(i)
328 *
329  CALL zlarft( 'Backward', 'Rowwise', nq-k+i+ib-1, ib,
330  $ a( i, 1 ), lda, tau( i ), t, ldt )
331  IF( left ) THEN
332 *
333 * H or H**H is applied to C(1:m-k+i+ib-1,1:n)
334 *
335  mi = m - k + i + ib - 1
336  ELSE
337 *
338 * H or H**H is applied to C(1:m,1:n-k+i+ib-1)
339 *
340  ni = n - k + i + ib - 1
341  END IF
342 *
343 * Apply H or H**H
344 *
345  CALL zlarfb( side, transt, 'Backward', 'Rowwise', mi, ni,
346  $ ib, a( i, 1 ), lda, t, ldt, c, ldc, work,
347  $ ldwork )
348  10 CONTINUE
349  END IF
350  work( 1 ) = lwkopt
351  RETURN
352 *
353 * End of ZUNMRQ
354 *
subroutine zlarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix...
Definition: zlarfb.f:197
subroutine zunmr2(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
ZUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf...
Definition: zunmr2.f:161
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine zlarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
ZLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition: zlarft.f:165
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
Definition: tstiee.f:83

Here is the call graph for this function:

Here is the caller graph for this function: