LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
zerrsyx.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zerrsy (PATH, NUNIT)
 ZERRSYX More...
 

Function/Subroutine Documentation

subroutine zerrsy ( character*3  PATH,
integer  NUNIT 
)

ZERRSYX

Purpose:
 ZERRSY tests the error exits for the COMPLEX*16 routines
 for symmetric indefinite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise zerrsy.f defines this subroutine.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2013

Definition at line 60 of file zerrsyx.f.

60 *
61 * -- LAPACK test routine (version 3.5.0) --
62 * -- LAPACK is a software package provided by Univ. of Tennessee, --
63 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
64 * November 2013
65 *
66 * .. Scalar Arguments ..
67  CHARACTER*3 path
68  INTEGER nunit
69 * ..
70 *
71 * =====================================================================
72 *
73 * .. Parameters ..
74  INTEGER nmax
75  parameter( nmax = 4 )
76 * ..
77 * .. Local Scalars ..
78  CHARACTER eq
79  CHARACTER*2 c2
80  INTEGER i, info, j, n_err_bnds, nparams
81  DOUBLE PRECISION anrm, rcond, berr
82 * ..
83 * .. Local Arrays ..
84  INTEGER ip( nmax )
85  DOUBLE PRECISION r( nmax ), r1( nmax ), r2( nmax ),
86  $ s( nmax ), err_bnds_n( nmax, 3 ),
87  $ err_bnds_c( nmax, 3 ), params( 1 )
88  COMPLEX*16 a( nmax, nmax ), af( nmax, nmax ), b( nmax ),
89  $ w( 2*nmax ), x( nmax )
90 * ..
91 * .. External Functions ..
92  LOGICAL lsamen
93  EXTERNAL lsamen
94 * ..
95 * .. External Subroutines ..
96  EXTERNAL alaesm, chkxer, zspcon, zsprfs, zsptrf, zsptri,
100  $ zsyrfsx
101 * ..
102 * .. Scalars in Common ..
103  LOGICAL lerr, ok
104  CHARACTER*32 srnamt
105  INTEGER infot, nout
106 * ..
107 * .. Common blocks ..
108  COMMON / infoc / infot, nout, ok, lerr
109  COMMON / srnamc / srnamt
110 * ..
111 * .. Intrinsic Functions ..
112  INTRINSIC dble, dcmplx
113 * ..
114 * .. Executable Statements ..
115 *
116  nout = nunit
117  WRITE( nout, fmt = * )
118  c2 = path( 2: 3 )
119 *
120 * Set the variables to innocuous values.
121 *
122  DO 20 j = 1, nmax
123  DO 10 i = 1, nmax
124  a( i, j ) = dcmplx( 1.d0 / dble( i+j ),
125  $ -1.d0 / dble( i+j ) )
126  af( i, j ) = dcmplx( 1.d0 / dble( i+j ),
127  $ -1.d0 / dble( i+j ) )
128  10 CONTINUE
129  b( j ) = 0.d0
130  r1( j ) = 0.d0
131  r2( j ) = 0.d0
132  w( j ) = 0.d0
133  x( j ) = 0.d0
134  s( j ) = 0.d0
135  ip( j ) = j
136  20 CONTINUE
137  anrm = 1.0d0
138  ok = .true.
139 *
140 * Test error exits of the routines that use factorization
141 * of a symmetric indefinite matrix with patrial
142 * (Bunch-Kaufman) diagonal pivoting method.
143 *
144  IF( lsamen( 2, c2, 'SY' ) ) THEN
145 *
146 * ZSYTRF
147 *
148  srnamt = 'ZSYTRF'
149  infot = 1
150  CALL zsytrf( '/', 0, a, 1, ip, w, 1, info )
151  CALL chkxer( 'ZSYTRF', infot, nout, lerr, ok )
152  infot = 2
153  CALL zsytrf( 'U', -1, a, 1, ip, w, 1, info )
154  CALL chkxer( 'ZSYTRF', infot, nout, lerr, ok )
155  infot = 4
156  CALL zsytrf( 'U', 2, a, 1, ip, w, 4, info )
157  CALL chkxer( 'ZSYTRF', infot, nout, lerr, ok )
158 *
159 * ZSYTF2
160 *
161  srnamt = 'ZSYTF2'
162  infot = 1
163  CALL zsytf2( '/', 0, a, 1, ip, info )
164  CALL chkxer( 'ZSYTF2', infot, nout, lerr, ok )
165  infot = 2
166  CALL zsytf2( 'U', -1, a, 1, ip, info )
167  CALL chkxer( 'ZSYTF2', infot, nout, lerr, ok )
168  infot = 4
169  CALL zsytf2( 'U', 2, a, 1, ip, info )
170  CALL chkxer( 'ZSYTF2', infot, nout, lerr, ok )
171 *
172 * ZSYTRI
173 *
174  srnamt = 'ZSYTRI'
175  infot = 1
176  CALL zsytri( '/', 0, a, 1, ip, w, info )
177  CALL chkxer( 'ZSYTRI', infot, nout, lerr, ok )
178  infot = 2
179  CALL zsytri( 'U', -1, a, 1, ip, w, info )
180  CALL chkxer( 'ZSYTRI', infot, nout, lerr, ok )
181  infot = 4
182  CALL zsytri( 'U', 2, a, 1, ip, w, info )
183  CALL chkxer( 'ZSYTRI', infot, nout, lerr, ok )
184 *
185 * ZSYTRI2
186 *
187  srnamt = 'ZSYTRI2'
188  infot = 1
189  CALL zsytri2( '/', 0, a, 1, ip, w, 1, info )
190  CALL chkxer( 'ZSYTRI2', infot, nout, lerr, ok )
191  infot = 2
192  CALL zsytri2( 'U', -1, a, 1, ip, w, 1, info )
193  CALL chkxer( 'ZSYTRI2', infot, nout, lerr, ok )
194  infot = 4
195  CALL zsytri2( 'U', 2, a, 1, ip, w, 1, info )
196  CALL chkxer( 'ZSYTRI2', infot, nout, lerr, ok )
197 *
198 * ZSYTRS
199 *
200  srnamt = 'ZSYTRS'
201  infot = 1
202  CALL zsytrs( '/', 0, 0, a, 1, ip, b, 1, info )
203  CALL chkxer( 'ZSYTRS', infot, nout, lerr, ok )
204  infot = 2
205  CALL zsytrs( 'U', -1, 0, a, 1, ip, b, 1, info )
206  CALL chkxer( 'ZSYTRS', infot, nout, lerr, ok )
207  infot = 3
208  CALL zsytrs( 'U', 0, -1, a, 1, ip, b, 1, info )
209  CALL chkxer( 'ZSYTRS', infot, nout, lerr, ok )
210  infot = 5
211  CALL zsytrs( 'U', 2, 1, a, 1, ip, b, 2, info )
212  CALL chkxer( 'ZSYTRS', infot, nout, lerr, ok )
213  infot = 8
214  CALL zsytrs( 'U', 2, 1, a, 2, ip, b, 1, info )
215  CALL chkxer( 'ZSYTRS', infot, nout, lerr, ok )
216 *
217 * ZSYRFS
218 *
219  srnamt = 'ZSYRFS'
220  infot = 1
221  CALL zsyrfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
222  $ r, info )
223  CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
224  infot = 2
225  CALL zsyrfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
226  $ w, r, info )
227  CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
228  infot = 3
229  CALL zsyrfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
230  $ w, r, info )
231  CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
232  infot = 5
233  CALL zsyrfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
234  $ r, info )
235  CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
236  infot = 7
237  CALL zsyrfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
238  $ r, info )
239  CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
240  infot = 10
241  CALL zsyrfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
242  $ r, info )
243  CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
244  infot = 12
245  CALL zsyrfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
246  $ r, info )
247  CALL chkxer( 'ZSYRFS', infot, nout, lerr, ok )
248 *
249 * ZSYRFSX
250 *
251  n_err_bnds = 3
252  nparams = 0
253  srnamt = 'ZSYRFSX'
254  infot = 1
255  CALL zsyrfsx( '/', eq, 0, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
256  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
257  $ params, w, r, info )
258  CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
259  infot = 2
260  CALL zsyrfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
261  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
262  $ params, w, r, info )
263  CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
264  eq = 'N'
265  infot = 3
266  CALL zsyrfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
267  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
268  $ params, w, r, info )
269  CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
270  infot = 4
271  CALL zsyrfsx( 'U', eq, 0, -1, a, 1, af, 1, ip, s, b, 1, x, 1,
272  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
273  $ params, w, r, info )
274  CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
275  infot = 6
276  CALL zsyrfsx( 'U', eq, 2, 1, a, 1, af, 2, ip, s, b, 2, x, 2,
277  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
278  $ params, w, r, info )
279  CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
280  infot = 8
281  CALL zsyrfsx( 'U', eq, 2, 1, a, 2, af, 1, ip, s, b, 2, x, 2,
282  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
283  $ params, w, r, info )
284  CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
285  infot = 12
286  CALL zsyrfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 1, x, 2,
287  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
288  $ params, w, r, info )
289  CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
290  infot = 14
291  CALL zsyrfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 2, x, 1,
292  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
293  $ params, w, r, info )
294  CALL chkxer( 'ZSYRFSX', infot, nout, lerr, ok )
295 *
296 * ZSYCON
297 *
298  srnamt = 'ZSYCON'
299  infot = 1
300  CALL zsycon( '/', 0, a, 1, ip, anrm, rcond, w, info )
301  CALL chkxer( 'ZSYCON', infot, nout, lerr, ok )
302  infot = 2
303  CALL zsycon( 'U', -1, a, 1, ip, anrm, rcond, w, info )
304  CALL chkxer( 'ZSYCON', infot, nout, lerr, ok )
305  infot = 4
306  CALL zsycon( 'U', 2, a, 1, ip, anrm, rcond, w, info )
307  CALL chkxer( 'ZSYCON', infot, nout, lerr, ok )
308  infot = 6
309  CALL zsycon( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
310  CALL chkxer( 'ZSYCON', infot, nout, lerr, ok )
311 *
312 * Test error exits of the routines that use factorization
313 * of a symmetric indefinite matrix with "rook"
314 * (bounded Bunch-Kaufman) diagonal pivoting method.
315 *
316  ELSE IF( lsamen( 2, c2, 'SR' ) ) THEN
317 *
318 * ZSYTRF_ROOK
319 *
320  srnamt = 'ZSYTRF_ROOK'
321  infot = 1
322  CALL zsytrf_rook( '/', 0, a, 1, ip, w, 1, info )
323  CALL chkxer( 'ZSYTRF_ROOK', infot, nout, lerr, ok )
324  infot = 2
325  CALL zsytrf_rook( 'U', -1, a, 1, ip, w, 1, info )
326  CALL chkxer( 'ZSYTRF_ROOK', infot, nout, lerr, ok )
327  infot = 4
328  CALL zsytrf_rook( 'U', 2, a, 1, ip, w, 4, info )
329  CALL chkxer( 'ZSYTRF_ROOK', infot, nout, lerr, ok )
330 *
331 * ZSYTF2_ROOK
332 *
333  srnamt = 'ZSYTF2_ROOK'
334  infot = 1
335  CALL zsytf2_rook( '/', 0, a, 1, ip, info )
336  CALL chkxer( 'ZSYTF2_ROOK', infot, nout, lerr, ok )
337  infot = 2
338  CALL zsytf2_rook( 'U', -1, a, 1, ip, info )
339  CALL chkxer( 'ZSYTF2_ROOK', infot, nout, lerr, ok )
340  infot = 4
341  CALL zsytf2_rook( 'U', 2, a, 1, ip, info )
342  CALL chkxer( 'ZSYTF2_ROOK', infot, nout, lerr, ok )
343 *
344 * ZSYTRI_ROOK
345 *
346  srnamt = 'ZSYTRI_ROOK'
347  infot = 1
348  CALL zsytri_rook( '/', 0, a, 1, ip, w, info )
349  CALL chkxer( 'ZSYTRI_ROOK', infot, nout, lerr, ok )
350  infot = 2
351  CALL zsytri_rook( 'U', -1, a, 1, ip, w, info )
352  CALL chkxer( 'ZSYTRI_ROOK', infot, nout, lerr, ok )
353  infot = 4
354  CALL zsytri_rook( 'U', 2, a, 1, ip, w, info )
355  CALL chkxer( 'ZSYTRI_ROOK', infot, nout, lerr, ok )
356 *
357 * ZSYTRS_ROOK
358 *
359  srnamt = 'ZSYTRS_ROOK'
360  infot = 1
361  CALL zsytrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
362  CALL chkxer( 'ZSYTRS_ROOK', infot, nout, lerr, ok )
363  infot = 2
364  CALL zsytrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
365  CALL chkxer( 'ZSYTRS_ROOK', infot, nout, lerr, ok )
366  infot = 3
367  CALL zsytrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
368  CALL chkxer( 'ZSYTRS_ROOK', infot, nout, lerr, ok )
369  infot = 5
370  CALL zsytrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
371  CALL chkxer( 'ZSYTRS_ROOK', infot, nout, lerr, ok )
372  infot = 8
373  CALL zsytrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
374  CALL chkxer( 'ZSYTRS_ROOK', infot, nout, lerr, ok )
375 *
376 * ZSYCON_ROOK
377 *
378  srnamt = 'ZSYCON_ROOK'
379  infot = 1
380  CALL zsycon_rook( '/', 0, a, 1, ip, anrm, rcond, w, info )
381  CALL chkxer( 'ZSYCON_ROOK', infot, nout, lerr, ok )
382  infot = 2
383  CALL zsycon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, info )
384  CALL chkxer( 'ZSYCON_ROOK', infot, nout, lerr, ok )
385  infot = 4
386  CALL zsycon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, info )
387  CALL chkxer( 'ZSYCON_ROOK', infot, nout, lerr, ok )
388  infot = 6
389  CALL zsycon_rook( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
390  CALL chkxer( 'ZSYCON_ROOK', infot, nout, lerr, ok )
391 *
392 * Test error exits of the routines that use factorization
393 * of a symmetric indefinite packed matrix with patrial
394 * (Bunch-Kaufman) pivoting.
395 *
396  ELSE IF( lsamen( 2, c2, 'SP' ) ) THEN
397 *
398 * ZSPTRF
399 *
400  srnamt = 'ZSPTRF'
401  infot = 1
402  CALL zsptrf( '/', 0, a, ip, info )
403  CALL chkxer( 'ZSPTRF', infot, nout, lerr, ok )
404  infot = 2
405  CALL zsptrf( 'U', -1, a, ip, info )
406  CALL chkxer( 'ZSPTRF', infot, nout, lerr, ok )
407 *
408 * ZSPTRI
409 *
410  srnamt = 'ZSPTRI'
411  infot = 1
412  CALL zsptri( '/', 0, a, ip, w, info )
413  CALL chkxer( 'ZSPTRI', infot, nout, lerr, ok )
414  infot = 2
415  CALL zsptri( 'U', -1, a, ip, w, info )
416  CALL chkxer( 'ZSPTRI', infot, nout, lerr, ok )
417 *
418 * ZSPTRS
419 *
420  srnamt = 'ZSPTRS'
421  infot = 1
422  CALL zsptrs( '/', 0, 0, a, ip, b, 1, info )
423  CALL chkxer( 'ZSPTRS', infot, nout, lerr, ok )
424  infot = 2
425  CALL zsptrs( 'U', -1, 0, a, ip, b, 1, info )
426  CALL chkxer( 'ZSPTRS', infot, nout, lerr, ok )
427  infot = 3
428  CALL zsptrs( 'U', 0, -1, a, ip, b, 1, info )
429  CALL chkxer( 'ZSPTRS', infot, nout, lerr, ok )
430  infot = 7
431  CALL zsptrs( 'U', 2, 1, a, ip, b, 1, info )
432  CALL chkxer( 'ZSPTRS', infot, nout, lerr, ok )
433 *
434 * ZSPRFS
435 *
436  srnamt = 'ZSPRFS'
437  infot = 1
438  CALL zsprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
439  $ info )
440  CALL chkxer( 'ZSPRFS', infot, nout, lerr, ok )
441  infot = 2
442  CALL zsprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
443  $ info )
444  CALL chkxer( 'ZSPRFS', infot, nout, lerr, ok )
445  infot = 3
446  CALL zsprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, r,
447  $ info )
448  CALL chkxer( 'ZSPRFS', infot, nout, lerr, ok )
449  infot = 8
450  CALL zsprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, r,
451  $ info )
452  CALL chkxer( 'ZSPRFS', infot, nout, lerr, ok )
453  infot = 10
454  CALL zsprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, r,
455  $ info )
456  CALL chkxer( 'ZSPRFS', infot, nout, lerr, ok )
457 *
458 * ZSPCON
459 *
460  srnamt = 'ZSPCON'
461  infot = 1
462  CALL zspcon( '/', 0, a, ip, anrm, rcond, w, info )
463  CALL chkxer( 'ZSPCON', infot, nout, lerr, ok )
464  infot = 2
465  CALL zspcon( 'U', -1, a, ip, anrm, rcond, w, info )
466  CALL chkxer( 'ZSPCON', infot, nout, lerr, ok )
467  infot = 5
468  CALL zspcon( 'U', 1, a, ip, -anrm, rcond, w, info )
469  CALL chkxer( 'ZSPCON', infot, nout, lerr, ok )
470  END IF
471 *
472 * Print a summary line.
473 *
474  CALL alaesm( path, ok, nout )
475 *
476  RETURN
477 *
478 * End of ZERRSY
479 *
subroutine zsytf2(UPLO, N, A, LDA, IPIV, INFO)
ZSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting ...
Definition: zsytf2.f:193
subroutine zsyrfsx(UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO)
ZSYRFSX
Definition: zsyrfsx.f:404
subroutine zsytrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZSYTRF_ROOK
Definition: zsytrf_rook.f:210
subroutine zspcon(UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO)
ZSPCON
Definition: zspcon.f:120
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine zsytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZSYTRS
Definition: zsytrs.f:122
subroutine zsycon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
ZSYCON
Definition: zsycon.f:127
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:76
subroutine zsyrfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZSYRFS
Definition: zsyrfs.f:194
subroutine zsytrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZSYTRS_ROOK
Definition: zsytrs_rook.f:138
subroutine zsptri(UPLO, N, AP, IPIV, WORK, INFO)
ZSPTRI
Definition: zsptri.f:111
subroutine zsprfs(UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZSPRFS
Definition: zsprfs.f:182
subroutine zsytri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZSYTRI2
Definition: zsytri2.f:129
subroutine zsptrf(UPLO, N, AP, IPIV, INFO)
ZSPTRF
Definition: zsptrf.f:160
subroutine zsytf2_rook(UPLO, N, A, LDA, IPIV, INFO)
ZSYTF2_ROOK computes the factorization of a complex symmetric indefinite matrix using the bounded Bun...
Definition: zsytf2_rook.f:196
subroutine zsytri(UPLO, N, A, LDA, IPIV, WORK, INFO)
ZSYTRI
Definition: zsytri.f:116
subroutine zsycon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
ZSYCON_ROOK
Definition: zsycon_rook.f:141
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine zsptrs(UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
ZSPTRS
Definition: zsptrs.f:117
subroutine zsytri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
ZSYTRI_ROOK
Definition: zsytri_rook.f:131
subroutine zsytrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZSYTRF
Definition: zsytrf.f:184

Here is the call graph for this function: