LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
zerrhex.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zerrhe (PATH, NUNIT)
 ZERRHEX More...
 

Function/Subroutine Documentation

subroutine zerrhe ( character*3  PATH,
integer  NUNIT 
)

ZERRHEX

Purpose:
 ZERRHE tests the error exits for the COMPLEX*16 routines
 for Hermitian indefinite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise zerrhe.f defines this subroutine.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2013

Definition at line 60 of file zerrhex.f.

60 *
61 * -- LAPACK test routine (version 3.5.0) --
62 * -- LAPACK is a software package provided by Univ. of Tennessee, --
63 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
64 * November 2013
65 *
66 * .. Scalar Arguments ..
67  CHARACTER*3 path
68  INTEGER nunit
69 * ..
70 *
71 * =====================================================================
72 *
73 *
74 * .. Parameters ..
75  INTEGER nmax
76  parameter( nmax = 4 )
77 * ..
78 * .. Local Scalars ..
79  CHARACTER eq
80  CHARACTER*2 c2
81  INTEGER i, info, j, n_err_bnds, nparams
82  DOUBLE PRECISION anrm, rcond, berr
83 * ..
84 * .. Local Arrays ..
85  INTEGER ip( nmax )
86  DOUBLE PRECISION r( nmax ), r1( nmax ), r2( nmax ),
87  $ s( nmax ), err_bnds_n( nmax, 3 ),
88  $ err_bnds_c( nmax, 3 ), params( 1 )
89  COMPLEX*16 a( nmax, nmax ), af( nmax, nmax ), b( nmax ),
90  $ w( 2*nmax ), x( nmax )
91 * ..
92 * .. External Functions ..
93  LOGICAL lsamen
94  EXTERNAL lsamen
95 * ..
96 * .. External Subroutines ..
97  EXTERNAL alaesm, chkxer, zhecon, zhecon_rook, zherfs,
101  $ zhptrs, zherfsx
102 * ..
103 * .. Scalars in Common ..
104  LOGICAL lerr, ok
105  CHARACTER*32 srnamt
106  INTEGER infot, nout
107 * ..
108 * .. Common blocks ..
109  COMMON / infoc / infot, nout, ok, lerr
110  COMMON / srnamc / srnamt
111 * ..
112 * .. Intrinsic Functions ..
113  INTRINSIC dble, dcmplx
114 * ..
115 * .. Executable Statements ..
116 *
117  nout = nunit
118  WRITE( nout, fmt = * )
119  c2 = path( 2: 3 )
120 *
121 * Set the variables to innocuous values.
122 *
123  DO 20 j = 1, nmax
124  DO 10 i = 1, nmax
125  a( i, j ) = dcmplx( 1.d0 / dble( i+j ),
126  $ -1.d0 / dble( i+j ) )
127  af( i, j ) = dcmplx( 1.d0 / dble( i+j ),
128  $ -1.d0 / dble( i+j ) )
129  10 CONTINUE
130  b( j ) = 0.d0
131  r1( j ) = 0.d0
132  r2( j ) = 0.d0
133  w( j ) = 0.d0
134  x( j ) = 0.d0
135  s( j ) = 0.d0
136  ip( j ) = j
137  20 CONTINUE
138  anrm = 1.0d0
139  ok = .true.
140 *
141 * Test error exits of the routines that use factorization
142 * of a Hermitian indefinite matrix with patrial
143 * (Bunch-Kaufman) diagonal pivoting method.
144 *
145  IF( lsamen( 2, c2, 'HE' ) ) THEN
146 *
147 * ZHETRF
148 *
149  srnamt = 'ZHETRF'
150  infot = 1
151  CALL zhetrf( '/', 0, a, 1, ip, w, 1, info )
152  CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
153  infot = 2
154  CALL zhetrf( 'U', -1, a, 1, ip, w, 1, info )
155  CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
156  infot = 4
157  CALL zhetrf( 'U', 2, a, 1, ip, w, 4, info )
158  CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
159 *
160 * ZHETF2
161 *
162  srnamt = 'ZHETF2'
163  infot = 1
164  CALL zhetf2( '/', 0, a, 1, ip, info )
165  CALL chkxer( 'ZHETF2', infot, nout, lerr, ok )
166  infot = 2
167  CALL zhetf2( 'U', -1, a, 1, ip, info )
168  CALL chkxer( 'ZHETF2', infot, nout, lerr, ok )
169  infot = 4
170  CALL zhetf2( 'U', 2, a, 1, ip, info )
171  CALL chkxer( 'ZHETF2', infot, nout, lerr, ok )
172 *
173 * ZHETRI
174 *
175  srnamt = 'ZHETRI'
176  infot = 1
177  CALL zhetri( '/', 0, a, 1, ip, w, info )
178  CALL chkxer( 'ZHETRI', infot, nout, lerr, ok )
179  infot = 2
180  CALL zhetri( 'U', -1, a, 1, ip, w, info )
181  CALL chkxer( 'ZHETRI', infot, nout, lerr, ok )
182  infot = 4
183  CALL zhetri( 'U', 2, a, 1, ip, w, info )
184  CALL chkxer( 'ZHETRI', infot, nout, lerr, ok )
185 *
186 * ZHETRI2
187 *
188  srnamt = 'ZHETRI2'
189  infot = 1
190  CALL zhetri2( '/', 0, a, 1, ip, w, 1, info )
191  CALL chkxer( 'ZHETRI2', infot, nout, lerr, ok )
192  infot = 2
193  CALL zhetri2( 'U', -1, a, 1, ip, w, 1, info )
194  CALL chkxer( 'ZHETRI2', infot, nout, lerr, ok )
195  infot = 4
196  CALL zhetri2( 'U', 2, a, 1, ip, w, 1, info )
197  CALL chkxer( 'ZHETRI2', infot, nout, lerr, ok )
198 *
199 * ZHETRS
200 *
201  srnamt = 'ZHETRS'
202  infot = 1
203  CALL zhetrs( '/', 0, 0, a, 1, ip, b, 1, info )
204  CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
205  infot = 2
206  CALL zhetrs( 'U', -1, 0, a, 1, ip, b, 1, info )
207  CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
208  infot = 3
209  CALL zhetrs( 'U', 0, -1, a, 1, ip, b, 1, info )
210  CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
211  infot = 5
212  CALL zhetrs( 'U', 2, 1, a, 1, ip, b, 2, info )
213  CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
214  infot = 8
215  CALL zhetrs( 'U', 2, 1, a, 2, ip, b, 1, info )
216  CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
217 *
218 * ZHERFS
219 *
220  srnamt = 'ZHERFS'
221  infot = 1
222  CALL zherfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
223  $ r, info )
224  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
225  infot = 2
226  CALL zherfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
227  $ w, r, info )
228  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
229  infot = 3
230  CALL zherfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
231  $ w, r, info )
232  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
233  infot = 5
234  CALL zherfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
235  $ r, info )
236  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
237  infot = 7
238  CALL zherfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
239  $ r, info )
240  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
241  infot = 10
242  CALL zherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
243  $ r, info )
244  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
245  infot = 12
246  CALL zherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
247  $ r, info )
248  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
249 *
250 * ZHERFSX
251 *
252  n_err_bnds = 3
253  nparams = 0
254  srnamt = 'ZHERFSX'
255  infot = 1
256  CALL zherfsx( '/', eq, 0, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
257  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
258  $ params, w, r, info )
259  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
260  infot = 2
261  CALL zherfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
262  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
263  $ params, w, r, info )
264  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
265  eq = 'N'
266  infot = 3
267  CALL zherfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
268  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
269  $ params, w, r, info )
270  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
271  infot = 4
272  CALL zherfsx( 'U', eq, 0, -1, a, 1, af, 1, ip, s, b, 1, x, 1,
273  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
274  $ params, w, r, info )
275  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
276  infot = 6
277  CALL zherfsx( 'U', eq, 2, 1, a, 1, af, 2, ip, s, b, 2, x, 2,
278  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
279  $ params, w, r, info )
280  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
281  infot = 8
282  CALL zherfsx( 'U', eq, 2, 1, a, 2, af, 1, ip, s, b, 2, x, 2,
283  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
284  $ params, w, r, info )
285  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
286  infot = 12
287  CALL zherfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 1, x, 2,
288  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
289  $ params, w, r, info )
290  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
291  infot = 14
292  CALL zherfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 2, x, 1,
293  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
294  $ params, w, r, info )
295  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
296 *
297 * ZHECON
298 *
299  srnamt = 'ZHECON'
300  infot = 1
301  CALL zhecon( '/', 0, a, 1, ip, anrm, rcond, w, info )
302  CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
303  infot = 2
304  CALL zhecon( 'U', -1, a, 1, ip, anrm, rcond, w, info )
305  CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
306  infot = 4
307  CALL zhecon( 'U', 2, a, 1, ip, anrm, rcond, w, info )
308  CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
309  infot = 6
310  CALL zhecon( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
311  CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
312 *
313 * Test error exits of the routines that use factorization
314 * of a Hermitian indefinite matrix with "rook"
315 * (bounded Bunch-Kaufman) diagonal pivoting method.
316 *
317  ELSE IF( lsamen( 2, c2, 'HR' ) ) THEN
318 *
319 * ZHETRF_ROOK
320 *
321  srnamt = 'ZHETRF_ROOK'
322  infot = 1
323  CALL zhetrf_rook( '/', 0, a, 1, ip, w, 1, info )
324  CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
325  infot = 2
326  CALL zhetrf_rook( 'U', -1, a, 1, ip, w, 1, info )
327  CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
328  infot = 4
329  CALL zhetrf_rook( 'U', 2, a, 1, ip, w, 4, info )
330  CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
331 *
332 * ZHETF2_ROOK
333 *
334  srnamt = 'ZHETF2_ROOK'
335  infot = 1
336  CALL zhetf2_rook( '/', 0, a, 1, ip, info )
337  CALL chkxer( 'ZHETF2_ROOK', infot, nout, lerr, ok )
338  infot = 2
339  CALL zhetf2_rook( 'U', -1, a, 1, ip, info )
340  CALL chkxer( 'ZHETF2_ROOK', infot, nout, lerr, ok )
341  infot = 4
342  CALL zhetf2_rook( 'U', 2, a, 1, ip, info )
343  CALL chkxer( 'ZHETF2_ROOK', infot, nout, lerr, ok )
344 *
345 * ZHETRI_ROOK
346 *
347  srnamt = 'ZHETRI_ROOK'
348  infot = 1
349  CALL zhetri_rook( '/', 0, a, 1, ip, w, info )
350  CALL chkxer( 'ZHETRI_ROOK', infot, nout, lerr, ok )
351  infot = 2
352  CALL zhetri_rook( 'U', -1, a, 1, ip, w, info )
353  CALL chkxer( 'ZHETRI_ROOK', infot, nout, lerr, ok )
354  infot = 4
355  CALL zhetri_rook( 'U', 2, a, 1, ip, w, info )
356  CALL chkxer( 'ZHETRI_ROOK', infot, nout, lerr, ok )
357 *
358 * ZHETRS_ROOK
359 *
360  srnamt = 'ZHETRS_ROOK'
361  infot = 1
362  CALL zhetrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
363  CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
364  infot = 2
365  CALL zhetrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
366  CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
367  infot = 3
368  CALL zhetrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
369  CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
370  infot = 5
371  CALL zhetrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
372  CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
373  infot = 8
374  CALL zhetrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
375  CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
376 *
377 * ZHECON_ROOK
378 *
379  srnamt = 'ZHECON_ROOK'
380  infot = 1
381  CALL zhecon_rook( '/', 0, a, 1, ip, anrm, rcond, w, info )
382  CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
383  infot = 2
384  CALL zhecon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, info )
385  CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
386  infot = 4
387  CALL zhecon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, info )
388  CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
389  infot = 6
390  CALL zhecon_rook( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
391  CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
392 *
393 * Test error exits of the routines that use factorization
394 * of a Hermitian indefinite packed matrix with patrial
395 * (Bunch-Kaufman) diagonal pivoting method.
396 *
397  ELSE IF( lsamen( 2, c2, 'HP' ) ) THEN
398 *
399 * ZHPTRF
400 *
401  srnamt = 'ZHPTRF'
402  infot = 1
403  CALL zhptrf( '/', 0, a, ip, info )
404  CALL chkxer( 'ZHPTRF', infot, nout, lerr, ok )
405  infot = 2
406  CALL zhptrf( 'U', -1, a, ip, info )
407  CALL chkxer( 'ZHPTRF', infot, nout, lerr, ok )
408 *
409 * ZHPTRI
410 *
411  srnamt = 'ZHPTRI'
412  infot = 1
413  CALL zhptri( '/', 0, a, ip, w, info )
414  CALL chkxer( 'ZHPTRI', infot, nout, lerr, ok )
415  infot = 2
416  CALL zhptri( 'U', -1, a, ip, w, info )
417  CALL chkxer( 'ZHPTRI', infot, nout, lerr, ok )
418 *
419 * ZHPTRS
420 *
421  srnamt = 'ZHPTRS'
422  infot = 1
423  CALL zhptrs( '/', 0, 0, a, ip, b, 1, info )
424  CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
425  infot = 2
426  CALL zhptrs( 'U', -1, 0, a, ip, b, 1, info )
427  CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
428  infot = 3
429  CALL zhptrs( 'U', 0, -1, a, ip, b, 1, info )
430  CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
431  infot = 7
432  CALL zhptrs( 'U', 2, 1, a, ip, b, 1, info )
433  CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
434 *
435 * ZHPRFS
436 *
437  srnamt = 'ZHPRFS'
438  infot = 1
439  CALL zhprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
440  $ info )
441  CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
442  infot = 2
443  CALL zhprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
444  $ info )
445  CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
446  infot = 3
447  CALL zhprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, r,
448  $ info )
449  CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
450  infot = 8
451  CALL zhprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, r,
452  $ info )
453  CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
454  infot = 10
455  CALL zhprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, r,
456  $ info )
457  CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
458 *
459 * ZHPCON
460 *
461  srnamt = 'ZHPCON'
462  infot = 1
463  CALL zhpcon( '/', 0, a, ip, anrm, rcond, w, info )
464  CALL chkxer( 'ZHPCON', infot, nout, lerr, ok )
465  infot = 2
466  CALL zhpcon( 'U', -1, a, ip, anrm, rcond, w, info )
467  CALL chkxer( 'ZHPCON', infot, nout, lerr, ok )
468  infot = 5
469  CALL zhpcon( 'U', 1, a, ip, -anrm, rcond, w, info )
470  CALL chkxer( 'ZHPCON', infot, nout, lerr, ok )
471  END IF
472 *
473 * Print a summary line.
474 *
475  CALL alaesm( path, ok, nout )
476 *
477  RETURN
478 *
479 * End of ZERRHE
480 *
subroutine zhecon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
ZHECON
Definition: zhecon.f:127
subroutine zhetrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using fac...
Definition: zhetrs_rook.f:138
subroutine zhetf2_rook(UPLO, N, A, LDA, IPIV, INFO)
ZHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
Definition: zhetf2_rook.f:196
subroutine zherfsx(UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO)
ZHERFSX
Definition: zherfsx.f:403
subroutine zhetri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
ZHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded Bunch...
Definition: zhetri_rook.f:130
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine zhptrf(UPLO, N, AP, IPIV, INFO)
ZHPTRF
Definition: zhptrf.f:161
subroutine zhetrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
Definition: zhetrf_rook.f:214
subroutine zhetri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZHETRI2
Definition: zhetri2.f:129
subroutine zhprfs(UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZHPRFS
Definition: zhprfs.f:182
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:76
subroutine zhetrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZHETRF
Definition: zhetrf.f:179
subroutine zhpcon(UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO)
ZHPCON
Definition: zhpcon.f:120
subroutine zhetf2(UPLO, N, A, LDA, IPIV, INFO)
ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (...
Definition: zhetf2.f:193
subroutine zhptrs(UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
ZHPTRS
Definition: zhptrs.f:117
subroutine zherfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZHERFS
Definition: zherfs.f:194
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine zhetri(UPLO, N, A, LDA, IPIV, WORK, INFO)
ZHETRI
Definition: zhetri.f:116
subroutine zhptri(UPLO, N, AP, IPIV, WORK, INFO)
ZHPTRI
Definition: zhptri.f:111
subroutine zhetrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZHETRS
Definition: zhetrs.f:122
subroutine zhecon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
ZHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obt...
Definition: zhecon_rook.f:141

Here is the call graph for this function: