Libav
cavs.c
Go to the documentation of this file.
1 /*
2  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3  * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "golomb.h"
31 #include "h264chroma.h"
32 #include "idctdsp.h"
33 #include "mathops.h"
34 #include "qpeldsp.h"
35 #include "cavs.h"
36 
37 static const uint8_t alpha_tab[64] = {
38  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
39  4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
40  22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
41  46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
42 };
43 
44 static const uint8_t beta_tab[64] = {
45  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
46  2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
47  6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
48  15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
49 };
50 
51 static const uint8_t tc_tab[64] = {
52  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
53  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
54  2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
55  5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
56 };
57 
60 static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
61 
62 static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
63 static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
64 static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
65 static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
66 
67 /*****************************************************************************
68  *
69  * in-loop deblocking filter
70  *
71  ****************************************************************************/
72 
73 static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
74 {
75  if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
76  return 2;
77  if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
78  return 1;
79  if (b) {
80  mvP += MV_BWD_OFFS;
81  mvQ += MV_BWD_OFFS;
82  if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
83  return 1;
84  } else {
85  if (mvP->ref != mvQ->ref)
86  return 1;
87  }
88  return 0;
89 }
90 
91 #define SET_PARAMS \
92  alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)]; \
93  beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0, 63)]; \
94  tc = tc_tab[av_clip(qp_avg + h->alpha_offset, 0, 63)];
95 
108 void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
109 {
110  uint8_t bs[8];
111  int qp_avg, alpha, beta, tc;
112  int i;
113 
114  /* save un-deblocked lines */
115  h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
116  h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
117  h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
118  memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
119  memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
120  memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
121  for (i = 0; i < 8; i++) {
122  h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
123  h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
124  h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
125  h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
126  }
127  if (!h->loop_filter_disable) {
128  /* determine bs */
129  if (mb_type == I_8X8)
130  memset(bs, 2, 8);
131  else {
132  memset(bs, 0, 8);
133  if (ff_cavs_partition_flags[mb_type] & SPLITV) {
134  bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
135  bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
136  }
137  if (ff_cavs_partition_flags[mb_type] & SPLITH) {
138  bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
139  bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
140  }
141  bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
142  bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
143  bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
144  bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
145  }
146  if (AV_RN64(bs)) {
147  if (h->flags & A_AVAIL) {
148  qp_avg = (h->qp + h->left_qp + 1) >> 1;
149  SET_PARAMS;
150  h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
151  h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
152  h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
153  }
154  qp_avg = h->qp;
155  SET_PARAMS;
156  h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
157  h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
158 
159  if (h->flags & B_AVAIL) {
160  qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
161  SET_PARAMS;
162  h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
163  h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
164  h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
165  }
166  }
167  }
168  h->left_qp = h->qp;
169  h->top_qp[h->mbx] = h->qp;
170 }
171 
172 #undef SET_PARAMS
173 
174 /*****************************************************************************
175  *
176  * spatial intra prediction
177  *
178  ****************************************************************************/
179 
181  uint8_t **left, int block)
182 {
183  int i;
184 
185  switch (block) {
186  case 0:
187  *left = h->left_border_y;
188  h->left_border_y[0] = h->left_border_y[1];
189  memset(&h->left_border_y[17], h->left_border_y[16], 9);
190  memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
191  top[17] = top[16];
192  top[0] = top[1];
193  if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
194  h->left_border_y[0] = top[0] = h->topleft_border_y;
195  break;
196  case 1:
197  *left = h->intern_border_y;
198  for (i = 0; i < 8; i++)
199  h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
200  memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
201  h->intern_border_y[0] = h->intern_border_y[1];
202  memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
203  if (h->flags & C_AVAIL)
204  memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
205  else
206  memset(&top[9], top[8], 9);
207  top[17] = top[16];
208  top[0] = top[1];
209  if (h->flags & B_AVAIL)
210  h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
211  break;
212  case 2:
213  *left = &h->left_border_y[8];
214  memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
215  top[17] = top[16];
216  top[0] = top[1];
217  if (h->flags & A_AVAIL)
218  top[0] = h->left_border_y[8];
219  break;
220  case 3:
221  *left = &h->intern_border_y[8];
222  for (i = 0; i < 8; i++)
223  h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
224  memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
225  memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
226  memset(&top[9], top[8], 9);
227  break;
228  }
229 }
230 
232 {
233  /* extend borders by one pixel */
234  h->left_border_u[9] = h->left_border_u[8];
235  h->left_border_v[9] = h->left_border_v[8];
236  h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
237  h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
238  if (h->mbx && h->mby) {
239  h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
240  h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
241  } else {
242  h->left_border_u[0] = h->left_border_u[1];
243  h->left_border_v[0] = h->left_border_v[1];
244  h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
245  h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
246  }
247 }
248 
249 static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
250 {
251  int y;
252  uint64_t a = AV_RN64(&top[1]);
253  for (y = 0; y < 8; y++)
254  *((uint64_t *)(d + y * stride)) = a;
255 }
256 
257 static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
258 {
259  int y;
260  uint64_t a;
261  for (y = 0; y < 8; y++) {
262  a = left[y + 1] * 0x0101010101010101ULL;
263  *((uint64_t *)(d + y * stride)) = a;
264  }
265 }
266 
267 static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
268 {
269  int y;
270  uint64_t a = 0x8080808080808080ULL;
271  for (y = 0; y < 8; y++)
272  *((uint64_t *)(d + y * stride)) = a;
273 }
274 
275 static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
276 {
277  int x, y, ia;
278  int ih = 0;
279  int iv = 0;
280  const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
281 
282  for (x = 0; x < 4; x++) {
283  ih += (x + 1) * (top[5 + x] - top[3 - x]);
284  iv += (x + 1) * (left[5 + x] - left[3 - x]);
285  }
286  ia = (top[8] + left[8]) << 4;
287  ih = (17 * ih + 16) >> 5;
288  iv = (17 * iv + 16) >> 5;
289  for (y = 0; y < 8; y++)
290  for (x = 0; x < 8; x++)
291  d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
292 }
293 
294 #define LOWPASS(ARRAY, INDEX) \
295  ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
296 
297 static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
298 {
299  int x, y;
300  for (y = 0; y < 8; y++)
301  for (x = 0; x < 8; x++)
302  d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
303 }
304 
305 static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
306 {
307  int x, y;
308  for (y = 0; y < 8; y++)
309  for (x = 0; x < 8; x++)
310  d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
311 }
312 
313 static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
314 {
315  int x, y;
316  for (y = 0; y < 8; y++)
317  for (x = 0; x < 8; x++)
318  if (x == y)
319  d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
320  else if (x > y)
321  d[y * stride + x] = LOWPASS(top, x - y);
322  else
323  d[y * stride + x] = LOWPASS(left, y - x);
324 }
325 
326 static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
327 {
328  int x, y;
329  for (y = 0; y < 8; y++)
330  for (x = 0; x < 8; x++)
331  d[y * stride + x] = LOWPASS(left, y + 1);
332 }
333 
334 static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
335 {
336  int x, y;
337  for (y = 0; y < 8; y++)
338  for (x = 0; x < 8; x++)
339  d[y * stride + x] = LOWPASS(top, x + 1);
340 }
341 
342 #undef LOWPASS
343 
344 static inline void modify_pred(const int8_t *mod_table, int *mode)
345 {
346  *mode = mod_table[*mode];
347  if (*mode < 0) {
348  av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
349  *mode = 0;
350  }
351 }
352 
353 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
354 {
355  /* save pred modes before they get modified */
356  h->pred_mode_Y[3] = h->pred_mode_Y[5];
357  h->pred_mode_Y[6] = h->pred_mode_Y[8];
358  h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
359  h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
360 
361  /* modify pred modes according to availability of neighbour samples */
362  if (!(h->flags & A_AVAIL)) {
365  modify_pred(left_modifier_c, pred_mode_uv);
366  }
367  if (!(h->flags & B_AVAIL)) {
370  modify_pred(top_modifier_c, pred_mode_uv);
371  }
372 }
373 
374 /*****************************************************************************
375  *
376  * motion compensation
377  *
378  ****************************************************************************/
379 
380 static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height,
381  int delta, int list, uint8_t *dest_y,
382  uint8_t *dest_cb, uint8_t *dest_cr,
383  int src_x_offset, int src_y_offset,
384  qpel_mc_func *qpix_op,
385  h264_chroma_mc_func chroma_op, cavs_vector *mv)
386 {
387  const int mx = mv->x + src_x_offset * 8;
388  const int my = mv->y + src_y_offset * 8;
389  const int luma_xy = (mx & 3) + ((my & 3) << 2);
390  uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
391  uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
392  uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
393  int extra_width = 0;
394  int extra_height = extra_width;
395  const int full_mx = mx >> 2;
396  const int full_my = my >> 2;
397  const int pic_width = 16 * h->mb_width;
398  const int pic_height = 16 * h->mb_height;
399  int emu = 0;
400 
401  if (!pic->data[0])
402  return;
403  if (mx & 7)
404  extra_width -= 3;
405  if (my & 7)
406  extra_height -= 3;
407 
408  if (full_mx < 0 - extra_width ||
409  full_my < 0 - extra_height ||
410  full_mx + 16 /* FIXME */ > pic_width + extra_width ||
411  full_my + 16 /* FIXME */ > pic_height + extra_height) {
413  src_y - 2 - 2 * h->l_stride,
414  h->l_stride, h->l_stride,
415  16 + 5, 16 + 5 /* FIXME */,
416  full_mx - 2, full_my - 2,
417  pic_width, pic_height);
418  src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride;
419  emu = 1;
420  }
421 
422  // FIXME try variable height perhaps?
423  qpix_op[luma_xy](dest_y, src_y, h->l_stride);
424 
425  if (emu) {
426  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb,
427  h->c_stride, h->c_stride,
428  9, 9 /* FIXME */,
429  mx >> 3, my >> 3,
430  pic_width >> 1, pic_height >> 1);
431  src_cb = h->edge_emu_buffer;
432  }
433  chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7);
434 
435  if (emu) {
436  h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr,
437  h->c_stride, h->c_stride,
438  9, 9 /* FIXME */,
439  mx >> 3, my >> 3,
440  pic_width >> 1, pic_height >> 1);
441  src_cr = h->edge_emu_buffer;
442  }
443  chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7);
444 }
445 
446 static inline void mc_part_std(AVSContext *h, int chroma_height, int delta,
447  uint8_t *dest_y,
448  uint8_t *dest_cb,
449  uint8_t *dest_cr,
450  int x_offset, int y_offset,
451  qpel_mc_func *qpix_put,
452  h264_chroma_mc_func chroma_put,
453  qpel_mc_func *qpix_avg,
454  h264_chroma_mc_func chroma_avg,
455  cavs_vector *mv)
456 {
457  qpel_mc_func *qpix_op = qpix_put;
458  h264_chroma_mc_func chroma_op = chroma_put;
459 
460  dest_y += x_offset * 2 + y_offset * h->l_stride * 2;
461  dest_cb += x_offset + y_offset * h->c_stride;
462  dest_cr += x_offset + y_offset * h->c_stride;
463  x_offset += 8 * h->mbx;
464  y_offset += 8 * h->mby;
465 
466  if (mv->ref >= 0) {
467  AVFrame *ref = h->DPB[mv->ref].f;
468  mc_dir_part(h, ref, chroma_height, delta, 0,
469  dest_y, dest_cb, dest_cr, x_offset, y_offset,
470  qpix_op, chroma_op, mv);
471 
472  qpix_op = qpix_avg;
473  chroma_op = chroma_avg;
474  }
475 
476  if ((mv + MV_BWD_OFFS)->ref >= 0) {
477  AVFrame *ref = h->DPB[0].f;
478  mc_dir_part(h, ref, chroma_height, delta, 1,
479  dest_y, dest_cb, dest_cr, x_offset, y_offset,
480  qpix_op, chroma_op, mv + MV_BWD_OFFS);
481  }
482 }
483 
484 void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
485 {
486  if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16
487  mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
492  &h->mv[MV_FWD_X0]);
493  } else {
494  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
499  &h->mv[MV_FWD_X0]);
500  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
505  &h->mv[MV_FWD_X1]);
506  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
511  &h->mv[MV_FWD_X2]);
512  mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
517  &h->mv[MV_FWD_X3]);
518  }
519 }
520 
521 /*****************************************************************************
522  *
523  * motion vector prediction
524  *
525  ****************************************************************************/
526 
527 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y,
528  cavs_vector *src, int distp)
529 {
530  int den = h->scale_den[src->ref];
531 
532  *d_x = (src->x * distp * den + 256 + (src->x >> 31)) >> 9;
533  *d_y = (src->y * distp * den + 256 + (src->y >> 31)) >> 9;
534 }
535 
536 static inline void mv_pred_median(AVSContext *h,
537  cavs_vector *mvP,
538  cavs_vector *mvA,
539  cavs_vector *mvB,
540  cavs_vector *mvC)
541 {
542  int ax, ay, bx, by, cx, cy;
543  int len_ab, len_bc, len_ca, len_mid;
544 
545  /* scale candidates according to their temporal span */
546  scale_mv(h, &ax, &ay, mvA, mvP->dist);
547  scale_mv(h, &bx, &by, mvB, mvP->dist);
548  scale_mv(h, &cx, &cy, mvC, mvP->dist);
549  /* find the geometrical median of the three candidates */
550  len_ab = abs(ax - bx) + abs(ay - by);
551  len_bc = abs(bx - cx) + abs(by - cy);
552  len_ca = abs(cx - ax) + abs(cy - ay);
553  len_mid = mid_pred(len_ab, len_bc, len_ca);
554  if (len_mid == len_ab) {
555  mvP->x = cx;
556  mvP->y = cy;
557  } else if (len_mid == len_bc) {
558  mvP->x = ax;
559  mvP->y = ay;
560  } else {
561  mvP->x = bx;
562  mvP->y = by;
563  }
564 }
565 
566 void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
567  enum cavs_mv_pred mode, enum cavs_block size, int ref)
568 {
569  cavs_vector *mvP = &h->mv[nP];
570  cavs_vector *mvA = &h->mv[nP-1];
571  cavs_vector *mvB = &h->mv[nP-4];
572  cavs_vector *mvC = &h->mv[nC];
573  const cavs_vector *mvP2 = NULL;
574 
575  mvP->ref = ref;
576  mvP->dist = h->dist[mvP->ref];
577  if (mvC->ref == NOT_AVAIL)
578  mvC = &h->mv[nP - 5]; // set to top-left (mvD)
579  if (mode == MV_PRED_PSKIP &&
580  (mvA->ref == NOT_AVAIL ||
581  mvB->ref == NOT_AVAIL ||
582  (mvA->x | mvA->y | mvA->ref) == 0 ||
583  (mvB->x | mvB->y | mvB->ref) == 0)) {
584  mvP2 = &un_mv;
585  /* if there is only one suitable candidate, take it */
586  } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) {
587  mvP2 = mvA;
588  } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) {
589  mvP2 = mvB;
590  } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) {
591  mvP2 = mvC;
592  } else if (mode == MV_PRED_LEFT && mvA->ref == ref) {
593  mvP2 = mvA;
594  } else if (mode == MV_PRED_TOP && mvB->ref == ref) {
595  mvP2 = mvB;
596  } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) {
597  mvP2 = mvC;
598  }
599  if (mvP2) {
600  mvP->x = mvP2->x;
601  mvP->y = mvP2->y;
602  } else
603  mv_pred_median(h, mvP, mvA, mvB, mvC);
604 
605  if (mode < MV_PRED_PSKIP) {
606  mvP->x += get_se_golomb(&h->gb);
607  mvP->y += get_se_golomb(&h->gb);
608  }
609  set_mvs(mvP, size);
610 }
611 
612 /*****************************************************************************
613  *
614  * macroblock level
615  *
616  ****************************************************************************/
617 
622 {
623  int i;
624 
625  /* copy predictors from top line (MB B and C) into cache */
626  for (i = 0; i < 3; i++) {
627  h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i];
628  h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i];
629  }
630  h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0];
631  h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1];
632  /* clear top predictors if MB B is not available */
633  if (!(h->flags & B_AVAIL)) {
634  h->mv[MV_FWD_B2] = un_mv;
635  h->mv[MV_FWD_B3] = un_mv;
636  h->mv[MV_BWD_B2] = un_mv;
637  h->mv[MV_BWD_B3] = un_mv;
638  h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
639  h->flags &= ~(C_AVAIL | D_AVAIL);
640  } else if (h->mbx) {
641  h->flags |= D_AVAIL;
642  }
643  if (h->mbx == h->mb_width - 1) // MB C not available
644  h->flags &= ~C_AVAIL;
645  /* clear top-right predictors if MB C is not available */
646  if (!(h->flags & C_AVAIL)) {
647  h->mv[MV_FWD_C2] = un_mv;
648  h->mv[MV_BWD_C2] = un_mv;
649  }
650  /* clear top-left predictors if MB D is not available */
651  if (!(h->flags & D_AVAIL)) {
652  h->mv[MV_FWD_D3] = un_mv;
653  h->mv[MV_BWD_D3] = un_mv;
654  }
655 }
656 
663 {
664  int i;
665 
666  h->flags |= A_AVAIL;
667  h->cy += 16;
668  h->cu += 8;
669  h->cv += 8;
670  /* copy mvs as predictors to the left */
671  for (i = 0; i <= 20; i += 4)
672  h->mv[i] = h->mv[i + 2];
673  /* copy bottom mvs from cache to top line */
674  h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2];
675  h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3];
676  h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2];
677  h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3];
678  /* next MB address */
679  h->mbidx++;
680  h->mbx++;
681  if (h->mbx == h->mb_width) { // New mb line
682  h->flags = B_AVAIL | C_AVAIL;
683  /* clear left pred_modes */
684  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
685  /* clear left mv predictors */
686  for (i = 0; i <= 20; i += 4)
687  h->mv[i] = un_mv;
688  h->mbx = 0;
689  h->mby++;
690  /* re-calculate sample pointers */
691  h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
692  h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
693  h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
694  if (h->mby == h->mb_height) { // Frame end
695  return 0;
696  }
697  }
698  return 1;
699 }
700 
701 /*****************************************************************************
702  *
703  * frame level
704  *
705  ****************************************************************************/
706 
708 {
709  int i;
710 
711  /* clear some predictors */
712  for (i = 0; i <= 20; i += 4)
713  h->mv[i] = un_mv;
715  set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
717  set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
718  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
719  h->cy = h->cur.f->data[0];
720  h->cu = h->cur.f->data[1];
721  h->cv = h->cur.f->data[2];
722  h->l_stride = h->cur.f->linesize[0];
723  h->c_stride = h->cur.f->linesize[1];
724  h->luma_scan[2] = 8 * h->l_stride;
725  h->luma_scan[3] = 8 * h->l_stride + 8;
726  h->mbx = h->mby = h->mbidx = 0;
727  h->flags = 0;
728 }
729 
730 /*****************************************************************************
731  *
732  * headers and interface
733  *
734  ****************************************************************************/
735 
742 {
743  /* alloc top line of predictors */
744  h->top_qp = av_mallocz(h->mb_width);
745  h->top_mv[0] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
746  h->top_mv[1] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
747  h->top_pred_Y = av_mallocz(h->mb_width * 2 * sizeof(*h->top_pred_Y));
748  h->top_border_y = av_mallocz((h->mb_width + 1) * 16);
749  h->top_border_u = av_mallocz(h->mb_width * 10);
750  h->top_border_v = av_mallocz(h->mb_width * 10);
751 
752  /* alloc space for co-located MVs and types */
753  h->col_mv = av_mallocz(h->mb_width * h->mb_height * 4 *
754  sizeof(cavs_vector));
756  h->block = av_mallocz(64 * sizeof(int16_t));
757 }
758 
760 {
761  AVSContext *h = avctx->priv_data;
762 
763  ff_blockdsp_init(&h->bdsp, avctx);
765  ff_idctdsp_init(&h->idsp, avctx);
766  ff_videodsp_init(&h->vdsp, 8);
767  ff_cavsdsp_init(&h->cdsp, avctx);
769  h->cdsp.idct_perm);
771 
772  h->avctx = avctx;
773  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
774 
775  h->cur.f = av_frame_alloc();
776  h->DPB[0].f = av_frame_alloc();
777  h->DPB[1].f = av_frame_alloc();
778  if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
779  ff_cavs_end(avctx);
780  return AVERROR(ENOMEM);
781  }
782 
783  h->luma_scan[0] = 0;
784  h->luma_scan[1] = 8;
800  h->mv[7] = un_mv;
801  h->mv[19] = un_mv;
802  return 0;
803 }
804 
806 {
807  AVSContext *h = avctx->priv_data;
808 
809  av_frame_free(&h->cur.f);
810  av_frame_free(&h->DPB[0].f);
811  av_frame_free(&h->DPB[1].f);
812 
813  av_free(h->top_qp);
814  av_free(h->top_mv[0]);
815  av_free(h->top_mv[1]);
816  av_free(h->top_pred_Y);
817  av_free(h->top_border_y);
818  av_free(h->top_border_u);
819  av_free(h->top_border_v);
820  av_free(h->col_mv);
822  av_free(h->block);
824  return 0;
825 }
cavs_mv_loc
Definition: cavs.h:120
void(* intra_pred_c[7])(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.h:230
uint8_t * top_border_v
Definition: cavs.h:224
uint8_t * top_border_u
Definition: cavs.h:224
void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
Definition: cavs.c:353
uint8_t topleft_border_y
Definition: cavs.h:227
AVCodecContext * avctx
Definition: cavs.h:164
int size
This structure describes decoded (raw) audio or video data.
Definition: frame.h:135
uint8_t * edge_emu_buffer
Definition: cavs.h:238
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:179
static int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
Definition: cavs.c:73
static const int8_t left_modifier_c[7]
Definition: cavs.c:64
Definition: cavs.h:62
int16_t x
Definition: cavs.h:144
void(* cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:35
av_cold int ff_cavs_end(AVCodecContext *avctx)
Definition: cavs.c:805
int mbidx
macroblock coordinates
Definition: cavs.h:186
static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:334
cavs_vector * col_mv
Definition: cavs.h:207
#define MAX_NEG_CROP
Definition: mathops.h:30
void av_log(void *avcl, int level, const char *fmt,...) av_printf_format(3
Send the specified message to the log if the level is less than or equal to the current av_log_level...
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1254
#define A_AVAIL
Definition: cavs.h:39
void ff_cavs_init_mb(AVSContext *h)
initialise predictors for motion vectors and intra prediction
Definition: cavs.c:621
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:39
int qp
Definition: cavs.h:217
int loop_filter_disable
Definition: cavs.h:183
int stride
Definition: mace.c:144
void(* cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:33
void(* cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:34
int left_qp
Definition: cavs.h:190
uint8_t intern_border_y[26]
Definition: cavs.h:226
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:57
void av_freep(void *ptr)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
Definition: mem.c:198
cavs_mb
Definition: cavs.h:61
#define MV_BWD_OFFS
Definition: cavs.h:58
int mbx
Definition: cavs.h:186
ScanTable scantable
Definition: cavs.h:220
uint8_t
float delta
#define SPLITH
Definition: cavs.h:55
uint8_t * top_qp
Definition: cavs.h:191
static const int8_t left_modifier_l[8]
Definition: cavs.c:62
#define b
Definition: input.c:52
uint8_t * top_border_y
intra prediction is done with un-deblocked samples they are saved here before deblocking the MB ...
Definition: cavs.h:224
av_cold void ff_cavsdsp_init(CAVSDSPContext *c, AVCodecContext *avctx)
Definition: cavsdsp.c:537
cavs_vector mv[2 *4 *3]
mv motion vector cache 0: D3 B2 B3 C2 4: A1 X0 X1 - 8: A3 X2 X3 -
Definition: cavs.h:205
quarterpel DSP functions
cavs_vector * top_mv[2]
Definition: cavs.h:206
static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:275
bitstream reader API header.
void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
in-loop deblocking filter for a single macroblock
Definition: cavs.c:108
int dist[2]
temporal distances from current frame to ref frames
Definition: cavs.h:173
int mby
Definition: cavs.h:186
void(* cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2)
Definition: cavsdsp.h:36
GetBitContext gb
Definition: cavs.h:170
uint8_t * cy
Definition: cavs.h:189
#define cm
Definition: dvbsubdec.c:34
#define D_AVAIL
Definition: cavs.h:42
static void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp)
Definition: cavs.c:527
uint8_t topleft_border_u
Definition: cavs.h:227
static void mv_pred_median(AVSContext *h, cavs_vector *mvP, cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC)
Definition: cavs.c:536
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
void av_free(void *ptr)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc(). ...
Definition: mem.c:186
uint8_t * cu
Definition: cavs.h:189
Definition: cavs.h:67
int scale_den[2]
for scaling neighbouring MVs
Definition: cavs.h:236
AVSFrame cur
currently decoded frame
Definition: cavs.h:171
#define SET_PARAMS
Definition: cavs.c:91
int ff_cavs_next_mb(AVSContext *h)
save predictors for later macroblocks and increase macroblock address
Definition: cavs.c:662
void(* qpel_mc_func)(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
Definition: qpeldsp.h:65
#define AVERROR(e)
Definition: error.h:43
void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
Definition: cavs.c:484
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:69
CAVSDSPContext cdsp
Definition: cavs.h:169
static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:267
uint8_t left_border_y[26]
Definition: cavs.h:225
#define C_AVAIL
Definition: cavs.h:41
static const uint8_t beta_tab[64]
Definition: cavs.c:44
void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top, uint8_t **left, int block)
Definition: cavs.c:180
static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:326
Libavcodec external API header.
AVSFrame DPB[2]
reference frames
Definition: cavs.h:172
static const int8_t top_modifier_c[7]
Definition: cavs.c:65
#define B_AVAIL
Definition: cavs.h:40
uint8_t * cv
current MB sample pointers
Definition: cavs.h:189
void ff_cavs_load_intra_pred_chroma(AVSContext *h)
Definition: cavs.c:231
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:37
static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:257
void ff_cavs_init_pic(AVSContext *h)
Definition: cavs.c:707
qpel_mc_func put_cavs_qpel_pixels_tab[2][16]
Definition: cavsdsp.h:31
#define NOT_AVAIL
Definition: cavs.h:43
av_cold int ff_cavs_init(AVCodecContext *avctx)
Definition: cavs.c:759
av_cold void ff_init_scantable_permutation(uint8_t *idct_permutation, enum idct_permutation_type perm_type)
Definition: idctdsp.c:49
int16_t dist
Definition: cavs.h:146
uint8_t left_border_u[10]
Definition: cavs.h:225
static const uint8_t tc_tab[64]
Definition: cavs.c:51
const uint8_t ff_cavs_partition_flags[30]
Definition: cavsdata.c:24
int16_t * block
Definition: cavs.h:241
void ff_cavs_init_top_lines(AVSContext *h)
some predictions require data from the top-neighbouring macroblock.
Definition: cavs.c:741
void(* emulated_edge_mc)(uint8_t *buf, const uint8_t *src, ptrdiff_t buf_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:52
void(* intra_pred_l[8])(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.h:229
const cavs_vector ff_cavs_dir_mv
mark block as "no prediction from this direction" e.g.
Definition: cavsdata.c:59
void(* h264_chroma_mc_func)(uint8_t *dst, uint8_t *src, int srcStride, int h, int x, int y)
Definition: h264chroma.h:24
#define AV_RN64(p)
Definition: intreadwrite.h:330
uint8_t idct_permutation[64]
IDCT input permutation.
Definition: idctdsp.h:94
h264_chroma_mc_func avg_h264_chroma_pixels_tab[3]
Definition: h264chroma.h:28
uint8_t left_border_v[10]
Definition: cavs.h:225
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:65
void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC, enum cavs_mv_pred mode, enum cavs_block size, int ref)
Definition: cavs.c:566
static void modify_pred(const int8_t *mod_table, int *mode)
Definition: cavs.c:344
if(ac->has_optimized_func)
static const int8_t mv[256][2]
Definition: 4xm.c:75
NULL
Definition: eval.c:55
#define av_cold
Definition: attributes.h:66
static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:297
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
Definition: blockdsp.c:58
main external API structure.
Definition: avcodec.h:1050
static void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op, cavs_vector *mv)
Definition: cavs.c:380
int pred_mode_Y[3 *3]
luma pred mode cache 0: – B2 B3 3: A1 X0 X1 6: A3 X2 X3
Definition: cavs.h:213
cavs_block
Definition: cavs.h:113
#define SPLITV
Definition: cavs.h:56
int * top_pred_Y
Definition: cavs.h:214
static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:305
int idct_perm
Definition: cavsdsp.h:38
int16_t ref
Definition: cavs.h:147
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:115
#define mid_pred
Definition: mathops.h:98
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:153
qpel_mc_func avg_cavs_qpel_pixels_tab[2][16]
Definition: cavsdsp.h:32
ptrdiff_t c_stride
Definition: cavs.h:215
#define LOWPASS(ARRAY, INDEX)
Definition: cavs.c:294
void * priv_data
Definition: avcodec.h:1092
uint8_t topleft_border_v
Definition: cavs.h:227
BlockDSPContext bdsp
Definition: cavs.h:165
static const int8_t top_modifier_l[8]
Definition: cavs.c:63
cavs_mv_pred
Definition: cavs.h:104
int flags
availability flags of neighbouring macroblocks
Definition: cavs.h:187
ptrdiff_t l_stride
Definition: cavs.h:215
#define ff_crop_tab
int luma_scan[4]
Definition: cavs.h:216
int mb_height
Definition: cavs.h:177
static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:249
h264_chroma_mc_func put_h264_chroma_pixels_tab[3]
Definition: h264chroma.h:27
av_cold void ff_init_scantable(uint8_t *permutation, ScanTable *st, const uint8_t *src_scantable)
Definition: idctdsp.c:28
#define REF_INTRA
Definition: cavs.h:44
av_cold void ff_idctdsp_init(IDCTDSPContext *c, AVCodecContext *avctx)
Definition: idctdsp.c:156
static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, int stride)
Definition: cavs.c:313
static const cavs_vector un_mv
mark block as unavailable, i.e.
Definition: cavs.c:60
static void set_mvs(cavs_vector *mv, enum cavs_block size)
Definition: cavs.h:248
IDCTDSPContext idsp
Definition: cavs.h:167
int16_t y
Definition: cavs.h:145
VideoDSPContext vdsp
Definition: cavs.h:168
exp golomb vlc stuff
H264ChromaContext h264chroma
Definition: cavs.h:166
static const uint8_t alpha_tab[64]
Definition: cavs.c:37
int mb_width
Definition: cavs.h:177
AVFrame * f
Definition: cavs.h:159
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:141
void * av_mallocz(size_t size) av_malloc_attrib 1(1)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:205
uint8_t * col_type_base
Definition: cavs.h:231
static void mc_part_std(AVSContext *h, int chroma_height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, cavs_vector *mv)
Definition: cavs.c:446
static int16_t block[64]
Definition: dct-test.c:88