48 #define MB_INTRA_VLC_BITS 9
54 static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
94 int topleft_mb_pos, top_mb_pos;
95 int stride_y, fieldtx = 0;
111 v_dist = (16 - fieldtx) >> (fieldtx == 0);
136 v_dist = fieldtx ? 15 : 8;
158 #define inc_blk_idx(idx) do { \
160 if (idx >= v->n_allocated_blks) \
179 for (j = 0; j < 2; j++) {
212 for (j = 0; j < 2; j++) {
229 for (j = 0; j < 2; j++) {
245 for (j = 0; j < 2; j++) {
256 for (j = 0; j < 2; j++) {
350 int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
353 uint8_t (*luty)[256], (*lutuv)[256];
361 mx = s->
mv[dir][0][0];
362 my = s->
mv[dir][0][1];
366 for (i = 0; i < 4; i++) {
372 uvmx = (mx + ((mx & 3) == 3)) >> 1;
373 uvmy = (my + ((my & 3) == 3)) >> 1;
385 uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
386 uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
413 if (!srcY || !srcU) {
418 src_x = s->
mb_x * 16 + (mx >> 2);
419 src_y = s->
mb_y * 16 + (my >> 2);
420 uvsrc_x = s->
mb_x * 8 + (uvmx >> 2);
421 uvsrc_y = s->
mb_y * 8 + (uvmy >> 2);
424 src_x = av_clip( src_x, -16, s->
mb_width * 16);
425 src_y = av_clip( src_y, -16, s->
mb_height * 16);
426 uvsrc_x = av_clip(uvsrc_x, -8, s->
mb_width * 8);
427 uvsrc_y = av_clip(uvsrc_y, -8, s->
mb_height * 8);
435 srcY += src_y * s->
linesize + src_x;
454 || (
unsigned)(src_y - 1) > v_edge_pos - (my&3) - 16 - 3) {
467 uvsrc_x, uvsrc_y, s->
h_edge_pos >> 1, v_edge_pos >> 1);
471 uvsrc_x, uvsrc_y, s->
h_edge_pos >> 1, v_edge_pos >> 1);
480 for (j = 0; j < 17 + s->
mspel * 2; j++) {
481 for (i = 0; i < 17 + s->
mspel * 2; i++)
482 src[i] = ((src[i] - 128) >> 1) + 128;
487 for (j = 0; j < 9; j++) {
488 for (i = 0; i < 9; i++) {
489 src[i] = ((src[i] - 128) >> 1) + 128;
490 src2[i] = ((src2[i] - 128) >> 1) + 128;
502 for (j = 0; j < 17 + s->
mspel * 2; j++) {
504 for (i = 0; i < 17 + s->
mspel * 2; i++)
505 src[i] = luty[f][src[i]];
510 for (j = 0; j < 9; j++) {
512 for (i = 0; i < 9; i++) {
513 src[i] = lutuv[f][src[i]];
514 src2[i] = lutuv[f][src2[i]];
524 dxy = ((my & 3) << 2) | (mx & 3);
531 dxy = (my & 2) | ((mx & 2) >> 1);
540 uvmx = (uvmx & 3) << 1;
541 uvmy = (uvmy & 3) << 1;
554 if (c < d)
return (
FFMIN(b, d) +
FFMAX(a, c)) / 2;
557 if (c < d)
return (
FFMIN(a, d) +
FFMAX(b, c)) / 2;
568 int dxy, mx, my, src_x, src_y;
580 mx = s->
mv[dir][n][0];
581 my = s->
mv[dir][n][1];
610 int same_count = 0, opp_count = 0, k;
611 int chosen_mv[2][4][2], f;
613 for (k = 0; k < 4; k++) {
615 chosen_mv[f][f ? opp_count : same_count][0] = s->
mv[0][k][0];
616 chosen_mv[f][f ? opp_count : same_count][1] = s->
mv[0][k][1];
620 f = opp_count > same_count;
621 switch (f ? opp_count : same_count) {
623 tx =
median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
624 chosen_mv[f][2][0], chosen_mv[f][3][0]);
625 ty =
median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
626 chosen_mv[f][2][1], chosen_mv[f][3][1]);
629 tx =
mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
630 ty =
mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
633 tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
634 ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
639 for (k = 0; k < 4; k++)
651 qx = (s->
mb_x * 16) + (mx >> 2);
652 qy = (s->
mb_y * 8) + (my >> 3);
657 mx -= 4 * (qx -
width);
660 else if (qy > height + 1)
661 my -= 8 * (qy - height - 1);
665 off = ((n > 1) ? s->
linesize : 0) + (n & 1) * 8;
667 off = s->
linesize * 4 * (n & 2) + (n & 1) * 8;
669 src_x = s->
mb_x * 16 + (n & 1) * 8 + (mx >> 2);
671 src_y = s->
mb_y * 16 + (n & 2) * 4 + (my >> 2);
673 src_y = s->
mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
676 src_x = av_clip(src_x, -16, s->
mb_width * 16);
677 src_y = av_clip(src_y, -16, s->
mb_height * 16);
690 srcY += src_y * s->
linesize + src_x;
694 if (fieldmv && !(src_y & 1))
696 if (fieldmv && (src_y & 1) && src_y < 4)
701 || (
unsigned)(src_y - (s->
mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->
mspel * 2) << fieldmv)) {
706 9 + s->
mspel * 2, (9 + s->
mspel * 2) << fieldmv,
707 src_x - s->
mspel, src_y - (s->
mspel << fieldmv),
716 for (j = 0; j < 9 + s->
mspel * 2; j++) {
717 for (i = 0; i < 9 + s->
mspel * 2; i++)
718 src[i] = ((src[i] - 128) >> 1) + 128;
728 for (j = 0; j < 9 + s->
mspel * 2; j++) {
730 for (i = 0; i < 9 + s->
mspel * 2; i++)
731 src[i] = luty[f][src[i]];
739 dxy = ((my & 3) << 2) | (mx & 3);
745 dxy = (my & 2) | ((mx & 2) >> 1);
756 static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
758 idx = ((a[3] != flag) << 3)
759 | ((a[2] != flag) << 2)
760 | ((a[1] != flag) << 1)
763 *tx =
median4(mvx[0], mvx[1], mvx[2], mvx[3]);
764 *ty =
median4(mvy[0], mvy[1], mvy[2], mvy[3]);
766 }
else if (count[idx] == 1) {
769 *tx =
mid_pred(mvx[1], mvx[2], mvx[3]);
770 *ty =
mid_pred(mvy[1], mvy[2], mvy[3]);
773 *tx =
mid_pred(mvx[0], mvx[2], mvx[3]);
774 *ty =
mid_pred(mvy[0], mvy[2], mvy[3]);
777 *tx =
mid_pred(mvx[0], mvx[1], mvx[3]);
778 *ty =
mid_pred(mvy[0], mvy[1], mvy[3]);
781 *tx =
mid_pred(mvx[0], mvx[1], mvx[2]);
782 *ty =
mid_pred(mvy[0], mvy[1], mvy[2]);
785 }
else if (count[idx] == 2) {
787 for (i = 0; i < 3; i++)
792 for (i = t1 + 1; i < 4; i++)
797 *tx = (mvx[t1] + mvx[t2]) / 2;
798 *ty = (mvy[t1] + mvy[t2]) / 2;
813 int uvmx, uvmy, uvsrc_x, uvsrc_y;
814 int k, tx = 0, ty = 0;
815 int mvx[4], mvy[4], intra[4], mv_f[4];
827 for (k = 0; k < 4; k++) {
828 mvx[k] = s->
mv[dir][k][0];
829 mvy[k] = s->
mv[dir][k][1];
847 if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
849 valid_count =
get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
857 uvmx = (tx + ((tx & 3) == 3)) >> 1;
858 uvmy = (ty + ((ty & 3) == 3)) >> 1;
864 uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
865 uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
869 uvmy += 2 - 4 * chroma_ref_type;
871 uvsrc_x = s->
mb_x * 8 + (uvmx >> 2);
872 uvsrc_y = s->
mb_y * 8 + (uvmy >> 2);
875 uvsrc_x = av_clip(uvsrc_x, -8, s->
mb_width * 8);
876 uvsrc_y = av_clip(uvsrc_y, -8, s->
mb_height * 8);
910 if (chroma_ref_type) {
918 || (
unsigned)uvsrc_x > (s->
h_edge_pos >> 1) - 9
919 || (
unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
922 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
926 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
938 for (j = 0; j < 9; j++) {
939 for (i = 0; i < 9; i++) {
940 src[i] = ((src[i] - 128) >> 1) + 128;
941 src2[i] = ((src2[i] - 128) >> 1) + 128;
954 for (j = 0; j < 9; j++) {
955 int f = v->
field_mode ? chroma_ref_type : ((j + uvsrc_y) & 1);
956 for (i = 0; i < 9; i++) {
957 src[i] = lutuv[f][src[i]];
958 src2[i] = lutuv[f][src2[i]];
967 uvmx = (uvmx & 3) << 1;
968 uvmy = (uvmy & 3) << 1;
985 int uvsrc_x, uvsrc_y;
986 int uvmx_field[4], uvmy_field[4];
989 static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
990 int v_dist = fieldmv ? 1 : 4;
998 for (i = 0; i < 4; i++) {
999 int d = i < 2 ? dir: dir2;
1000 tx = s->
mv[d][i][0];
1001 uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
1002 ty = s->
mv[d][i][1];
1004 uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
1006 uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
1009 for (i = 0; i < 4; i++) {
1010 off = (i & 1) * 4 + ((i & 2) ? v_dist * s->
uvlinesize : 0);
1011 uvsrc_x = s->
mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
1012 uvsrc_y = s->
mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
1016 if (i < 2 ? dir : dir2) {
1027 uvmx_field[i] = (uvmx_field[i] & 3) << 1;
1028 uvmy_field[i] = (uvmy_field[i] & 3) << 1;
1030 if (fieldmv && !(uvsrc_y & 1))
1032 if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
1035 || s->
h_edge_pos < 10 || v_edge_pos < (5 << fieldmv)
1036 || (unsigned)uvsrc_x > (s->
h_edge_pos >> 1) - 5
1037 || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
1040 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
1044 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
1056 for (j = 0; j < 5; j++) {
1057 int f = (uvsrc_y + (j << fieldmv)) & 1;
1058 for (i = 0; i < 5; i++) {
1059 src[i] = lutuv[f][src[i]];
1060 src2[i] = lutuv[f][src2[i]];
1098 #define GET_MQUANT() \
1099 if (v->dquantfrm) { \
1101 if (v->dqprofile == DQPROFILE_ALL_MBS) { \
1102 if (v->dqbilevel) { \
1103 mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
1105 mqdiff = get_bits(gb, 3); \
1107 mquant = v->pq + mqdiff; \
1109 mquant = get_bits(gb, 5); \
1112 if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
1113 edges = 1 << v->dqsbedge; \
1114 else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
1115 edges = (3 << v->dqsbedge) % 15; \
1116 else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
1118 if ((edges&1) && !s->mb_x) \
1119 mquant = v->altpq; \
1120 if ((edges&2) && s->first_slice_line) \
1121 mquant = v->altpq; \
1122 if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
1123 mquant = v->altpq; \
1124 if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
1125 mquant = v->altpq; \
1126 if (!mquant || mquant > 31) { \
1127 av_log(v->s.avctx, AV_LOG_ERROR, \
1128 "Overriding invalid mquant %d\n", mquant); \
1140 #define GET_MVDATA(_dmv_x, _dmv_y) \
1141 index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
1142 VC1_MV_DIFF_VLC_BITS, 2); \
1144 mb_has_coeffs = 1; \
1147 mb_has_coeffs = 0; \
1150 _dmv_x = _dmv_y = 0; \
1151 } else if (index == 35) { \
1152 _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
1153 _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
1154 } else if (index == 36) { \
1159 index1 = index % 6; \
1160 if (!s->quarter_sample && index1 == 5) val = 1; \
1162 if (size_table[index1] - val > 0) \
1163 val = get_bits(gb, size_table[index1] - val); \
1165 sign = 0 - (val&1); \
1166 _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1168 index1 = index / 6; \
1169 if (!s->quarter_sample && index1 == 5) val = 1; \
1171 if (size_table[index1] - val > 0) \
1172 val = get_bits(gb, size_table[index1] - val); \
1174 sign = 0 - (val & 1); \
1175 _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
1179 int *dmv_y,
int *pred_flag)
1182 int extend_x = 0, extend_y = 0;
1186 const int* offs_tab;
1203 extend_x = extend_y = 1;
1212 *pred_flag = *dmv_y & 1;
1213 *dmv_y = (*dmv_y + *pred_flag) >> 1;
1215 *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
1224 index1 = (index + 1) % 9;
1226 val =
get_bits(gb, index1 + extend_x);
1227 sign = 0 -(val & 1);
1228 *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
1235 index1 = (index + 1) / 9;
1236 if (index1 > v->
numref) {
1238 sign = 0 - (val & 1);
1239 *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->
numref])) - sign;
1242 if (v->
numref && pred_flag)
1243 *pred_flag = index1 & 1;
1249 int scaledvalue, refdist;
1250 int scalesame1, scalesame2;
1251 int scalezone1_x, zone1offset_x;
1268 if (
FFABS(n) < scalezone1_x)
1269 scaledvalue = (n * scalesame1) >> 8;
1272 scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
1274 scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
1282 int scaledvalue, refdist;
1283 int scalesame1, scalesame2;
1284 int scalezone1_y, zone1offset_y;
1301 if (
FFABS(n) < scalezone1_y)
1302 scaledvalue = (n * scalesame1) >> 8;
1305 scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
1307 scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
1312 return av_clip(scaledvalue, -v->
range_y / 2 + 1, v->
range_y / 2);
1314 return av_clip(scaledvalue, -v->
range_y / 2, v->
range_y / 2 - 1);
1319 int scalezone1_x, zone1offset_x;
1320 int scaleopp1, scaleopp2, brfd;
1332 if (
FFABS(n) < scalezone1_x)
1333 scaledvalue = (n * scaleopp1) >> 8;
1336 scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
1338 scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
1346 int scalezone1_y, zone1offset_y;
1347 int scaleopp1, scaleopp2, brfd;
1359 if (
FFABS(n) < scalezone1_y)
1360 scaledvalue = (n * scaleopp1) >> 8;
1363 scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
1365 scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
1369 return av_clip(scaledvalue, -v->
range_y / 2 + 1, v->
range_y / 2);
1371 return av_clip(scaledvalue, -v->
range_y / 2, v->
range_y / 2 - 1);
1378 int brfd, scalesame;
1392 n = (n * scalesame >> 8) << hpel;
1399 int refdist, scaleopp;
1416 n = (n * scaleopp >> 8) << hpel;
1423 int mv1,
int r_x,
int r_y,
uint8_t* is_intra,
1424 int pred_flag,
int dir)
1427 int xy,
wrap, off = 0;
1431 int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
1432 int opposite, a_f, b_f, c_f;
1433 int16_t field_predA[2];
1434 int16_t field_predB[2];
1435 int16_t field_predC[2];
1436 int a_valid, b_valid, c_valid;
1437 int hybridmv_thresh, y_bias = 0;
1485 off = (s->
mb_x > 0) ? -1 : 1;
1500 b_valid = a_valid && (s->
mb_width > 1);
1501 c_valid = s->
mb_x || (n == 1 || n == 3);
1503 a_valid = a_valid && !is_intra[xy -
wrap];
1504 b_valid = b_valid && !is_intra[xy - wrap + off];
1505 c_valid = c_valid && !is_intra[xy - 1];
1510 num_oppfield += a_f;
1511 num_samefield += 1 - a_f;
1512 field_predA[0] = A[0];
1513 field_predA[1] = A[1];
1515 field_predA[0] = field_predA[1] = 0;
1520 num_oppfield += b_f;
1521 num_samefield += 1 - b_f;
1522 field_predB[0] = B[0];
1523 field_predB[1] = B[1];
1525 field_predB[0] = field_predB[1] = 0;
1530 num_oppfield += c_f;
1531 num_samefield += 1 - c_f;
1532 field_predC[0] = C[0];
1533 field_predC[1] = C[1];
1535 field_predC[0] = field_predC[1] = 0;
1545 if (num_samefield <= num_oppfield)
1546 opposite = 1 - pred_flag;
1548 opposite = pred_flag;
1553 if (a_valid && !a_f) {
1554 field_predA[0] =
scaleforopp(v, field_predA[0], 0, dir);
1555 field_predA[1] =
scaleforopp(v, field_predA[1], 1, dir);
1557 if (b_valid && !b_f) {
1558 field_predB[0] =
scaleforopp(v, field_predB[0], 0, dir);
1559 field_predB[1] =
scaleforopp(v, field_predB[1], 1, dir);
1561 if (c_valid && !c_f) {
1562 field_predC[0] =
scaleforopp(v, field_predC[0], 0, dir);
1563 field_predC[1] =
scaleforopp(v, field_predC[1], 1, dir);
1568 if (a_valid && a_f) {
1569 field_predA[0] =
scaleforsame(v, n, field_predA[0], 0, dir);
1570 field_predA[1] =
scaleforsame(v, n, field_predA[1], 1, dir);
1572 if (b_valid && b_f) {
1573 field_predB[0] =
scaleforsame(v, n, field_predB[0], 0, dir);
1574 field_predB[1] =
scaleforsame(v, n, field_predB[1], 1, dir);
1576 if (c_valid && c_f) {
1577 field_predC[0] =
scaleforsame(v, n, field_predC[0], 0, dir);
1578 field_predC[1] =
scaleforsame(v, n, field_predC[1], 1, dir);
1585 px = field_predA[0];
1586 py = field_predA[1];
1587 }
else if (c_valid) {
1588 px = field_predC[0];
1589 py = field_predC[1];
1590 }
else if (b_valid) {
1591 px = field_predB[0];
1592 py = field_predB[1];
1598 if (num_samefield + num_oppfield > 1) {
1599 px =
mid_pred(field_predA[0], field_predB[0], field_predC[0]);
1600 py =
mid_pred(field_predA[1], field_predB[1], field_predC[1]);
1606 qx = (s->
mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
1607 qy = (s->
mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
1611 if (qx + px < -60) px = -60 - qx;
1612 if (qy + py < -60) py = -60 - qy;
1614 if (qx + px < -28) px = -28 - qx;
1615 if (qy + py < -28) py = -28 - qy;
1617 if (qx + px > X) px = X - qx;
1618 if (qy + py > Y) py = Y - qy;
1623 hybridmv_thresh = 32;
1624 if (a_valid && c_valid) {
1625 if (is_intra[xy - wrap])
1628 sum =
FFABS(px - field_predA[0]) +
FFABS(py - field_predA[1]);
1629 if (sum > hybridmv_thresh) {
1631 px = field_predA[0];
1632 py = field_predA[1];
1634 px = field_predC[0];
1635 py = field_predC[1];
1638 if (is_intra[xy - 1])
1641 sum =
FFABS(px - field_predC[0]) +
FFABS(py - field_predC[1]);
1642 if (sum > hybridmv_thresh) {
1644 px = field_predA[0];
1645 py = field_predA[1];
1647 px = field_predC[0];
1648 py = field_predC[1];
1677 int mvn,
int r_x,
int r_y,
uint8_t* is_intra,
int dir)
1680 int xy,
wrap, off = 0;
1681 int A[2],
B[2], C[2];
1683 int a_valid = 0, b_valid = 0, c_valid = 0;
1684 int field_a, field_b, field_c;
1685 int total_valid, num_samefield, num_oppfield;
1686 int pos_c, pos_b, n_adj;
1714 off = ((n == 0) || (n == 1)) ? 1 : -1;
1716 if (s->
mb_x || (n == 1) || (n == 3)) {
1736 B[0] = B[1] = C[0] = C[1] = 0;
1744 n_adj = (n & 2) | (n & 1);
1798 total_valid = a_valid + b_valid + c_valid;
1800 if (!s->
mb_x && !(n == 1 || n == 3)) {
1805 B[0] = B[1] = C[0] = C[1] = 0;
1812 if (total_valid >= 2) {
1815 }
else if (total_valid) {
1816 if (a_valid) { px = A[0]; py = A[1]; }
1817 if (b_valid) { px = B[0]; py = B[1]; }
1818 if (c_valid) { px = C[0]; py = C[1]; }
1824 field_a = (A[1] & 4) ? 1 : 0;
1828 field_b = (B[1] & 4) ? 1 : 0;
1832 field_c = (C[1] & 4) ? 1 : 0;
1836 num_oppfield = field_a + field_b + field_c;
1837 num_samefield = total_valid - num_oppfield;
1838 if (total_valid == 3) {
1839 if ((num_samefield == 3) || (num_oppfield == 3)) {
1842 }
else if (num_samefield >= num_oppfield) {
1845 px = !field_a ? A[0] : B[0];
1846 py = !field_a ? A[1] : B[1];
1848 px = field_a ? A[0] : B[0];
1849 py = field_a ? A[1] : B[1];
1851 }
else if (total_valid == 2) {
1852 if (num_samefield >= num_oppfield) {
1853 if (!field_a && a_valid) {
1856 }
else if (!field_b && b_valid) {
1859 }
else if (c_valid) {
1864 if (field_a && a_valid) {
1867 }
else if (field_b && b_valid) {
1870 }
else if (c_valid) {
1876 }
else if (total_valid == 1) {
1877 px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
1878 py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
1893 }
else if (mvn == 2) {
1896 s->
mv[dir][n + 1][0] = s->
mv[dir][n][0];
1897 s->
mv[dir][n + 1][1] = s->
mv[dir][n][1];
1908 int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1916 mx = s->
mv[1][0][0];
1917 my = s->
mv[1][0][1];
1918 uvmx = (mx + ((mx & 3) == 3)) >> 1;
1919 uvmy = (my + ((my & 3) == 3)) >> 1;
1926 uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
1927 uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
1933 src_x = s->
mb_x * 16 + (mx >> 2);
1934 src_y = s->
mb_y * 16 + (my >> 2);
1935 uvsrc_x = s->
mb_x * 8 + (uvmx >> 2);
1936 uvsrc_y = s->
mb_y * 8 + (uvmy >> 2);
1939 src_x = av_clip( src_x, -16, s->
mb_width * 16);
1940 src_y = av_clip( src_y, -16, s->
mb_height * 16);
1941 uvsrc_x = av_clip(uvsrc_x, -8, s->
mb_width * 8);
1942 uvsrc_y = av_clip(uvsrc_y, -8, s->
mb_height * 8);
1950 srcY += src_y * s->
linesize + src_x;
1967 || (
unsigned)(src_x - 1) > s->
h_edge_pos - (mx & 3) - 16 - 3
1968 || (
unsigned)(src_y - 1) > v_edge_pos - (my & 3) - 16 - 3) {
1981 uvsrc_x, uvsrc_y, s->
h_edge_pos >> 1, v_edge_pos >> 1);
1985 uvsrc_x, uvsrc_y, s->
h_edge_pos >> 1, v_edge_pos >> 1);
1994 for (j = 0; j < 17 + s->
mspel * 2; j++) {
1995 for (i = 0; i < 17 + s->
mspel * 2; i++)
1996 src[i] = ((src[i] - 128) >> 1) + 128;
2001 for (j = 0; j < 9; j++) {
2002 for (i = 0; i < 9; i++) {
2003 src[i] = ((src[i] - 128) >> 1) + 128;
2004 src2[i] = ((src2[i] - 128) >> 1) + 128;
2018 for (j = 0; j < 17 + s->
mspel * 2; j++) {
2020 for (i = 0; i < 17 + s->
mspel * 2; i++)
2021 src[i] = luty[f][src[i]];
2026 for (j = 0; j < 9; j++) {
2028 for (i = 0; i < 9; i++) {
2029 src[i] = lutuv[f][src[i]];
2030 src2[i] = lutuv[f][src2[i]];
2043 dxy = ((my & 3) << 2) | (mx & 3);
2050 dxy = (my & 2) | ((mx & 2) >> 1);
2060 uvmx = (uvmx & 3) << 1;
2061 uvmy = (uvmy & 3) << 1;
2075 #if B_FRACTION_DEN==256
2079 return 2 * ((value * n + 255) >> 9);
2080 return (value * n + 128) >> 8;
2093 int direct,
int mode)
2110 int direct,
int mvtype)
2113 int xy,
wrap, off = 0;
2145 s->
mv[0][0][0] = av_clip(s->
mv[0][0][0], -60 - (s->
mb_x << 6), (s->
mb_width << 6) - 4 - (s->
mb_x << 6));
2146 s->
mv[0][0][1] = av_clip(s->
mv[0][0][1], -60 - (s->
mb_y << 6), (s->
mb_height << 6) - 4 - (s->
mb_y << 6));
2147 s->
mv[1][0][0] = av_clip(s->
mv[1][0][0], -60 - (s->
mb_x << 6), (s->
mb_width << 6) - 4 - (s->
mb_x << 6));
2148 s->
mv[1][0][1] = av_clip(s->
mv[1][0][1], -60 - (s->
mb_y << 6), (s->
mb_height << 6) - 4 - (s->
mb_y << 6));
2164 if (!s->
mb_x) C[0] = C[1] = 0;
2173 }
else if (s->
mb_x) {
2183 qx = (s->
mb_x << 5);
2184 qy = (s->
mb_y << 5);
2187 if (qx + px < -28) px = -28 - qx;
2188 if (qy + py < -28) py = -28 - qy;
2189 if (qx + px > X) px = X - qx;
2190 if (qy + py > Y) py = Y - qy;
2192 qx = (s->
mb_x << 6);
2193 qy = (s->
mb_y << 6);
2196 if (qx + px < -60) px = -60 - qx;
2197 if (qy + py < -60) py = -60 - qy;
2198 if (qx + px > X) px = X - qx;
2199 if (qy + py > Y) py = Y - qy;
2204 if (is_intra[xy - wrap])
2217 if (is_intra[xy - 2])
2233 s->
mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2234 s->
mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2252 }
else if (s->
mb_x) {
2262 qx = (s->
mb_x << 5);
2263 qy = (s->
mb_y << 5);
2266 if (qx + px < -28) px = -28 - qx;
2267 if (qy + py < -28) py = -28 - qy;
2268 if (qx + px > X) px = X - qx;
2269 if (qy + py > Y) py = Y - qy;
2271 qx = (s->
mb_x << 6);
2272 qy = (s->
mb_y << 6);
2275 if (qx + px < -60) px = -60 - qx;
2276 if (qy + py < -60) py = -60 - qy;
2277 if (qx + px > X) px = X - qx;
2278 if (qy + py > Y) py = Y - qy;
2283 if (is_intra[xy - wrap])
2296 if (is_intra[xy - 2])
2313 s->
mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2314 s->
mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2329 int total_opp, k, f;
2344 f = (total_opp > 2) ? 1 : 0;
2346 s->
mv[0][0][0] = s->
mv[0][0][1] = 0;
2347 s->
mv[1][0][0] = s->
mv[1][0][1] = 0;
2351 for (k = 0; k < 4; k++) {
2368 if (n == 3 || mv1) {
2373 if (n == 3 || mv1) {
2389 int16_t **dc_val_ptr,
int *dir_ptr)
2393 static const uint16_t dcpred[32] = {
2394 -1, 1024, 512, 341, 256, 205, 171, 146, 128,
2395 114, 102, 93, 85, 79, 73, 68, 64,
2396 60, 57, 54, 51, 49, 47, 45, 43,
2397 41, 39, 38, 37, 35, 34, 33
2411 b = dc_val[ - 1 -
wrap];
2412 a = dc_val[ -
wrap];
2414 if (pq < 9 || !overlap) {
2417 b = a = dcpred[scale];
2418 if (s->
mb_x == 0 && (n != 1 && n != 3))
2419 b = c = dcpred[scale];
2424 if (s->
mb_x == 0 && (n != 1 && n != 3))
2428 if (abs(a - b) <= abs(b - c)) {
2437 *dc_val_ptr = &dc_val[0];
2454 int a_avail,
int c_avail,
2455 int16_t **dc_val_ptr,
int *dir_ptr)
2470 b = dc_val[ - 1 -
wrap];
2471 a = dc_val[ -
wrap];
2475 if (dqscale_index < 0)
2477 if (c_avail && (n != 1 && n != 3)) {
2482 if (a_avail && (n != 2 && n != 3)) {
2487 if (a_avail && c_avail && (n != 3)) {
2498 if (a_avail && c_avail) {
2499 if (abs(a - b) <= abs(b - c)) {
2506 }
else if (a_avail) {
2509 }
else if (c_avail) {
2518 *dc_val_ptr = &dc_val[0];
2567 int *value,
int codingset)
2633 int coded,
int codingset)
2637 int dc_pred_dir = 0;
2640 int16_t *ac_val, *ac_val2;
2654 if (dcdiff == 119 ) {
2657 else if (v->
pq == 2) dcdiff =
get_bits(gb, 9);
2661 dcdiff = (dcdiff << 2) +
get_bits(gb, 2) - 3;
2662 else if (v->
pq == 2)
2663 dcdiff = (dcdiff << 1) +
get_bits1(gb) - 1;
2688 int last = 0, skip, value;
2715 block[zz_table[i++]] = value;
2721 for (k = 1; k < 8; k++)
2724 for (k = 1; k < 8; k++)
2729 for (k = 1; k < 8; k++) {
2735 for (k = 1; k < 64; k++)
2739 block[k] += (block[k] < 0) ? -v->
pq : v->
pq;
2753 memset(ac_val2, 0, 16 * 2);
2757 memcpy(ac_val2, ac_val, 8 * 2);
2761 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2767 for (k = 1; k < 8; k++) {
2773 for (k = 1; k < 8; k++) {
2774 block[k << v->
top_blk_sh] = ac_val[k + 8] * scale;
2796 int coded,
int codingset,
int mquant)
2800 int dc_pred_dir = 0;
2803 int16_t *ac_val, *ac_val2;
2822 if (dcdiff == 119 ) {
2824 if (mquant == 1) dcdiff =
get_bits(gb, 10);
2825 else if (mquant == 2) dcdiff =
get_bits(gb, 9);
2829 dcdiff = (dcdiff << 2) +
get_bits(gb, 2) - 3;
2830 else if (mquant == 2)
2831 dcdiff = (dcdiff << 1) +
get_bits1(gb) - 1;
2852 if (!a_avail && !c_avail)
2857 scale = mquant * 2 + ((mquant == v->
pq) ? v->
halfpq : 0);
2865 if ( dc_pred_dir && c_avail && mb_pos)
2867 if (!dc_pred_dir && a_avail && mb_pos >= s->
mb_stride)
2869 if ( dc_pred_dir && n == 1)
2871 if (!dc_pred_dir && n == 2)
2877 int last = 0, skip, value;
2902 block[zz_table[i++]] = value;
2908 if (q2 && q1 != q2) {
2909 q1 = q1 * 2 + ((q1 == v->
pq) ? v->
halfpq : 0) - 1;
2910 q2 = q2 * 2 + ((q2 == v->
pq) ? v->
halfpq : 0) - 1;
2915 for (k = 1; k < 8; k++)
2918 for (k = 1; k < 8; k++)
2923 for (k = 1; k < 8; k++)
2926 for (k = 1; k < 8; k++)
2932 for (k = 1; k < 8; k++) {
2938 for (k = 1; k < 64; k++)
2942 block[k] += (block[k] < 0) ? -mquant : mquant;
2945 if (use_pred) i = 63;
2949 memset(ac_val2, 0, 16 * 2);
2952 memcpy(ac_val2, ac_val, 8 * 2);
2953 if (q2 && q1 != q2) {
2954 q1 = q1 * 2 + ((q1 == v->
pq) ? v->
halfpq : 0) - 1;
2955 q2 = q2 * 2 + ((q2 == v->
pq) ? v->
halfpq : 0) - 1;
2958 for (k = 1; k < 8; k++)
2959 ac_val2[k] = (ac_val2[k] * q2 *
ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2964 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2965 if (q2 && q1 != q2) {
2966 q1 = q1 * 2 + ((q1 == v->
pq) ? v->
halfpq : 0) - 1;
2967 q2 = q2 * 2 + ((q2 == v->
pq) ? v->
halfpq : 0) - 1;
2970 for (k = 1; k < 8; k++)
2971 ac_val2[k + 8] = (ac_val2[k + 8] * q2 *
ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2979 for (k = 1; k < 8; k++) {
2985 for (k = 1; k < 8; k++) {
2986 block[k << v->
top_blk_sh] = ac_val2[k + 8] * scale;
3008 int coded,
int mquant,
int codingset)
3012 int dc_pred_dir = 0;
3015 int16_t *ac_val, *ac_val2;
3026 mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
3043 if (dcdiff == 119 ) {
3045 if (mquant == 1) dcdiff =
get_bits(gb, 10);
3046 else if (mquant == 2) dcdiff =
get_bits(gb, 9);
3050 dcdiff = (dcdiff << 2) +
get_bits(gb, 2) - 3;
3051 else if (mquant == 2)
3052 dcdiff = (dcdiff << 1) +
get_bits1(gb) - 1;
3059 dcdiff +=
vc1_pred_dc(&v->
s, v->
overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
3074 if (!a_avail) dc_pred_dir = 1;
3075 if (!c_avail) dc_pred_dir = 0;
3076 if (!a_avail && !c_avail) use_pred = 0;
3080 scale = mquant * 2 + v->
halfpq;
3088 if (dc_pred_dir && c_avail && mb_pos)
3090 if (!dc_pred_dir && a_avail && mb_pos >= s->
mb_stride)
3092 if ( dc_pred_dir && n == 1)
3094 if (!dc_pred_dir && n == 2)
3096 if (n == 3) q2 = q1;
3099 int last = 0, skip, value;
3108 block[v->
zz_8x8[0][i++]] = value;
3112 block[v->
zz_8x8[2][i++]] = value;
3114 block[v->
zz_8x8[3][i++]] = value;
3116 block[v->
zzi_8x8[i++]] = value;
3124 if (q2 && q1 != q2) {
3125 q1 = q1 * 2 + ((q1 == v->
pq) ? v->
halfpq : 0) - 1;
3126 q2 = q2 * 2 + ((q2 == v->
pq) ? v->
halfpq : 0) - 1;
3131 for (k = 1; k < 8; k++)
3134 for (k = 1; k < 8; k++)
3139 for (k = 1; k < 8; k++)
3142 for (k = 1; k < 8; k++)
3148 for (k = 1; k < 8; k++) {
3154 for (k = 1; k < 64; k++)
3158 block[k] += (block[k] < 0) ? -mquant : mquant;
3161 if (use_pred) i = 63;
3165 memset(ac_val2, 0, 16 * 2);
3168 memcpy(ac_val2, ac_val, 8 * 2);
3169 if (q2 && q1 != q2) {
3170 q1 = q1 * 2 + ((q1 == v->
pq) ? v->
halfpq : 0) - 1;
3171 q2 = q2 * 2 + ((q2 == v->
pq) ? v->
halfpq : 0) - 1;
3174 for (k = 1; k < 8; k++)
3175 ac_val2[k] = (ac_val2[k] * q2 *
ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3180 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
3181 if (q2 && q1 != q2) {
3182 q1 = q1 * 2 + ((q1 == v->
pq) ? v->
halfpq : 0) - 1;
3183 q2 = q2 * 2 + ((q2 == v->
pq) ? v->
halfpq : 0) - 1;
3186 for (k = 1; k < 8; k++)
3187 ac_val2[k + 8] = (ac_val2[k + 8] * q2 *
ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3195 for (k = 1; k < 8; k++) {
3201 for (k = 1; k < 8; k++) {
3202 block[k << v->
top_blk_sh] = ac_val2[k + 8] * scale;
3218 int mquant,
int ttmb,
int first_block,
3219 uint8_t *dst,
int linesize,
int skip_block,
3226 int scale, off, idx, last, skip, value;
3227 int ttblk = ttmb & 7;
3239 && ((v->
ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
3249 scale = 2 * mquant + ((v->
pq == mquant) ? v->
halfpq : 0);
3274 block[idx] = value * scale;
3276 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3288 pat = ~subblkpat & 0xF;
3289 for (j = 0; j < 4; j++) {
3290 last = subblkpat & (1 << (3 - j));
3292 off = (j & 1) * 4 + (j & 2) * 16;
3302 block[idx + off] = value * scale;
3304 block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3306 if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
3315 pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
3316 for (j = 0; j < 2; j++) {
3317 last = subblkpat & (1 << (1 - j));
3326 idx = v->
zz_8x4[i++] + off;
3329 block[idx] = value * scale;
3331 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3333 if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
3342 pat = ~(subblkpat * 5) & 0xF;
3343 for (j = 0; j < 2; j++) {
3344 last = subblkpat & (1 << (1 - j));
3353 idx = v->
zz_4x8[i++] + off;
3356 block[idx] = value * scale;
3358 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3360 if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
3370 *ttmb_out |= ttblk << (n * 4);
3383 block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
3385 block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
3389 if (block_num > 3) {
3390 dst = s->
dest[block_num - 3];
3392 dst = s->
dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
3398 if (block_num > 3) {
3399 bottom_cbp = v->
cbp[s->
mb_x] >> (block_num * 4);
3400 bottom_is_intra = v->
is_intra[s->
mb_x] >> (block_num * 4);
3404 bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4))
3405 : (v->
cbp[s->
mb_x] >> ((block_num - 2) * 4));
3406 bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4))
3412 if (bottom_is_intra & 1 || block_is_intra & 1 ||
3413 mv[0][0] !=
mv[mv_stride][0] ||
mv[0][1] !=
mv[mv_stride][1]) {
3416 idx = ((bottom_cbp >> 2) | block_cbp) & 3;
3428 dst -= 4 * linesize;
3431 idx = (block_cbp | (block_cbp >> 2)) & 3;
3447 block_cbp = mb_cbp >> (block_num * 4), right_cbp,
3449 block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
3453 if (block_num > 3) {
3454 dst = s->
dest[block_num - 3] - 8 * linesize;
3456 dst = s->
dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
3462 if (block_num > 3) {
3467 right_cbp = (block_num & 1) ? (v->
cbp[s->
mb_x - s->
mb_stride] >> ((block_num - 1) * 4))
3468 : (mb_cbp >> ((block_num + 1) * 4));
3470 : (mb_is_intra >> ((block_num + 1) * 4));
3473 if (block_is_intra & 1 || right_is_intra & 1 ||
mv[0][0] !=
mv[1][0] ||
mv[0][1] !=
mv[1][1]) {
3476 idx = ((right_cbp >> 1) | block_cbp) & 5;
3491 idx = (block_cbp | (block_cbp >> 1)) & 5;
3508 for (i = 0; i < 6; i++) {
3515 for (i = 0; i < 6; i++) {
3521 for (i = 0; i < 6; i++) {
3538 int ttmb = v->
ttfrm;
3540 int mb_has_coeffs = 1;
3544 int first_block = 1;
3546 int skipped, fourmv;
3547 int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
3572 if (s->
mb_intra && !mb_has_coeffs) {
3576 }
else if (mb_has_coeffs) {
3592 for (i = 0; i < 6; i++) {
3595 val = ((cbp >> (5 - i)) & 1);
3596 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->
linesize);
3603 if (i == 1 || i == 3 || s->
mb_x)
3612 for (j = 0; j < 64; j++)
3613 s->
block[i][j] <<= 1;
3615 s->
dest[dst_idx] + off,
3624 block_cbp |= 0xF << (i << 2);
3625 block_intra |= 1 << i;
3630 block_cbp |= pat << (i << 2);
3631 if (!v->
ttmbf && ttmb < 8)
3638 for (i = 0; i < 6; i++) {
3649 int intra_count = 0, coded_inter = 0;
3650 int is_intra[6], is_coded[6];
3653 for (i = 0; i < 6; i++) {
3654 val = ((cbp >> (5 - i)) & 1);
3669 is_coded[i] = mb_has_coeffs;
3672 is_intra[i] = (intra_count >= 3);
3679 coded_inter = !is_intra[i] & is_coded[i];
3683 if (!intra_count && !coded_inter)
3690 for (i = 0; i < 6; i++)
3703 if (!v->
ttmbf && coded_inter)
3705 for (i = 0; i < 6; i++) {
3707 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->
linesize);
3714 if (i == 1 || i == 3 || s->
mb_x)
3723 for (j = 0; j < 64; j++)
3724 s->
block[i][j] <<= 1;
3726 s->
dest[dst_idx] + off,
3735 block_cbp |= 0xF << (i << 2);
3736 block_intra |= 1 << i;
3737 }
else if (is_coded[i]) {
3739 first_block, s->
dest[dst_idx] + off,
3743 block_cbp |= pat << (i << 2);
3744 if (!v->
ttmbf && ttmb < 8)
3752 for (i = 0; i < 6; i++) {
3756 for (i = 0; i < 4; i++) {
3782 int ttmb = v->
ttfrm;
3784 int mb_has_coeffs = 1;
3787 int first_block = 1;
3789 int skipped, fourmv = 0, twomv = 0;
3790 int block_cbp = 0, pat, block_tt = 0;
3791 int idx_mbmode = 0, mvbp;
3792 int stride_y, fieldtx;
3836 for (i = 0; i < 4; i++) {
3842 for (i = 0; i < 6; i++)
3855 for (i = 0; i < 6; i++) {
3858 val = ((cbp >> (5 - i)) & 1);
3863 if (i == 1 || i == 3 || s->
mb_x)
3872 off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->
linesize : (i & 1) * 8 + 4 * (i & 2) * s->
linesize;
3878 s->
dest[dst_idx] + off,
3896 for (i = 0; i < 6; i++)
3903 for (i = 0; i < 6; i++) {
3906 val = ((mvbp >> (3 - i)) & 1);
3912 }
else if (i == 4) {
3945 if (!v->
ttmbf && cbp)
3947 for (i = 0; i < 6; i++) {
3950 val = ((cbp >> (5 - i)) & 1);
3952 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->
linesize);
3954 off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->
linesize));
3957 first_block, s->
dest[dst_idx] + off,
3960 block_cbp |= pat << (i << 2);
3961 if (!v->
ttmbf && ttmb < 8)
3969 for (i = 0; i < 6; i++) {
3995 int ttmb = v->
ttfrm;
3997 int mb_has_coeffs = 1;
4000 int first_block = 1;
4003 int block_cbp = 0, pat, block_tt = 0;
4009 if (idx_mbmode <= 1) {
4020 mb_has_coeffs = idx_mbmode & 1;
4024 for (i = 0; i < 6; i++) {
4028 val = ((cbp >> (5 - i)) & 1);
4032 if (i == 1 || i == 3 || s->
mb_x)
4040 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->
linesize);
4042 s->
dest[dst_idx] + off,
4051 if (idx_mbmode <= 5) {
4052 dmv_x = dmv_y = pred_flag = 0;
4053 if (idx_mbmode & 1) {
4058 mb_has_coeffs = !(idx_mbmode & 2);
4061 for (i = 0; i < 6; i++) {
4063 dmv_x = dmv_y = pred_flag = 0;
4064 val = ((v->
fourmvbp >> (3 - i)) & 1);
4073 mb_has_coeffs = idx_mbmode & 1;
4081 if (!v->
ttmbf && cbp) {
4085 for (i = 0; i < 6; i++) {
4088 val = ((cbp >> (5 - i)) & 1);
4089 off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->
linesize;
4092 first_block, s->
dest[dst_idx] + off,
4096 block_cbp |= pat << (i << 2);
4097 if (!v->
ttmbf && ttmb < 8) ttmb = -1;
4117 int ttmb = v->
ttfrm;
4118 int mb_has_coeffs = 0;
4121 int first_block = 1;
4123 int skipped, direct;
4124 int dmv_x[2], dmv_y[2];
4139 dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
4140 for (i = 0; i < 6; i++) {
4149 dmv_x[1] = dmv_x[0];
4150 dmv_y[1] = dmv_y[0];
4163 dmv_x[0] = dmv_y[0] = 0;
4167 for (i = 0; i < 6; i++)
4174 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4184 dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
4186 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4188 if (!mb_has_coeffs && !s->
mb_intra) {
4191 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4194 if (s->
mb_intra && !mb_has_coeffs) {
4203 if (!mb_has_coeffs) {
4206 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4212 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
4224 for (i = 0; i < 6; i++) {
4227 val = ((cbp >> (5 - i)) & 1);
4228 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->
linesize);
4235 if (i == 1 || i == 3 || s->
mb_x)
4244 for (j = 0; j < 64; j++)
4245 s->
block[i][j] <<= 1;
4247 s->
dest[dst_idx] + off,
4252 first_block, s->
dest[dst_idx] + off,
4255 if (!v->
ttmbf && ttmb < 8)
4272 int ttmb = v->
ttfrm;
4273 int mb_has_coeffs = 0;
4275 int first_block = 1;
4278 int dmv_x[2], dmv_y[2], pred_flag[2];
4280 int idx_mbmode, interpmvp;
4286 if (idx_mbmode <= 1) {
4297 mb_has_coeffs = idx_mbmode & 1;
4301 for (i = 0; i < 6; i++) {
4304 val = ((cbp >> (5 - i)) & 1);
4309 if (i == 1 || i == 3 || s->
mb_x)
4318 for (j = 0; j < 64; j++)
4319 s->
block[i][j] <<= 1;
4320 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->
linesize);
4322 s->
dest[dst_idx] + off,
4335 if (idx_mbmode <= 5) {
4336 dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
4337 pred_flag[0] = pred_flag[1] = 0;
4362 dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
4363 dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
4367 mb_has_coeffs = !(idx_mbmode & 2);
4373 for (i = 0; i < 6; i++) {
4375 dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
4376 dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
4377 val = ((v->
fourmvbp >> (3 - i)) & 1);
4388 mb_has_coeffs = idx_mbmode & 1;
4396 if (!v->
ttmbf && cbp) {
4400 for (i = 0; i < 6; i++) {
4403 val = ((cbp >> (5 - i)) & 1);
4404 off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->
linesize;
4407 first_block, s->
dest[dst_idx] + off,
4410 if (!v->
ttmbf && ttmb < 8)
4428 int ttmb = v->
ttfrm;
4430 int mb_has_coeffs = 1;
4433 int first_block = 1;
4435 int skipped, direct, twomv = 0;
4436 int block_cbp = 0, pat, block_tt = 0;
4437 int idx_mbmode = 0, mvbp;
4438 int stride_y, fieldtx;
4482 for (i = 1; i < 4; i += 2) {
4489 for (i = 1; i < 4; i++) {
4499 for (i = 0; i < 4; i++) {
4507 for (i = 0; i < 6; i++)
4520 for (i = 0; i < 6; i++) {
4523 val = ((cbp >> (5 - i)) & 1);
4528 if (i == 1 || i == 3 || s->
mb_x)
4538 off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->
linesize : (i & 1) * 8 + 4 * (i & 2) * s->
linesize;
4544 s->
dest[dst_idx] + off,
4580 for (i = 0; i < 6; i++)
4587 for (i = 0; i < 4; i++) {
4599 for (i = 0; i < 4; i++) {
4602 val = ((mvbp >> (3 - i)) & 1);
4645 for (i = 0; i < 2; i++) {
4675 for (i = 0; i < 2; i++) {
4685 if (!v->
ttmbf && cbp)
4687 for (i = 0; i < 6; i++) {
4690 val = ((cbp >> (5 - i)) & 1);
4692 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->
linesize);
4694 off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->
linesize));
4697 first_block, s->
dest[dst_idx] + off,
4700 block_cbp |= pat << (i << 2);
4701 if (!v->
ttmbf && ttmb < 8)
4709 for (i = 0; i < 6; i++) {
4731 for (i = 0; i < 2; i++) {
4743 for (i = 0; i < 2; i++) {
4813 dst[0] = s->
dest[0];
4814 dst[1] = dst[0] + 8;
4816 dst[3] = dst[2] + 8;
4817 dst[4] = s->
dest[1];
4818 dst[5] = s->
dest[2];
4830 for (k = 0; k < 6; k++) {
4831 val = ((cbp >> (5 - k)) & 1);
4838 cbp |= val << (5 - k);
4847 for (j = 0; j < 64; j++)
4848 s->
block[k][j] <<= 1;
4854 for (j = 0; j < 64; j++)
4988 for (k = 0; k < 6; k++) {
4989 val = ((cbp >> (5 - k)) & 1);
4996 cbp |= val << (5 - k);
5106 if (apply_loop_filter) {
5242 #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
5258 int effect_type, effect_flag;
5259 int effect_pcount1, effect_pcount2;
5260 int effect_params1[15], effect_params2[10];
5268 static void vc1_sprite_parse_transform(
GetBitContext* gb,
int c[7])
5275 c[2] = get_fp_val(gb);
5279 c[0] = c[4] = get_fp_val(gb);
5280 c[2] = get_fp_val(gb);
5283 c[0] = get_fp_val(gb);
5284 c[2] = get_fp_val(gb);
5285 c[4] = get_fp_val(gb);
5288 c[0] = get_fp_val(gb);
5289 c[1] = get_fp_val(gb);
5290 c[2] = get_fp_val(gb);
5291 c[3] = get_fp_val(gb);
5292 c[4] = get_fp_val(gb);
5295 c[5] = get_fp_val(gb);
5297 c[6] = get_fp_val(gb);
5307 for (sprite = 0; sprite <= v->
two_sprites; sprite++) {
5308 vc1_sprite_parse_transform(gb, sd->coefs[sprite]);
5309 if (sd->coefs[sprite][1] || sd->coefs[sprite][3])
5312 for (i = 0; i < 7; i++)
5314 sd->coefs[sprite][i] / (1<<16),
5315 (abs(sd->coefs[sprite][i]) & 0xFFFF) * 1000 / (1 << 16));
5321 switch (sd->effect_pcount1 =
get_bits(gb, 4)) {
5323 vc1_sprite_parse_transform(gb, sd->effect_params1);
5326 vc1_sprite_parse_transform(gb, sd->effect_params1);
5327 vc1_sprite_parse_transform(gb, sd->effect_params1 + 7);
5330 for (i = 0; i < sd->effect_pcount1; i++)
5331 sd->effect_params1[i] = get_fp_val(gb);
5333 if (sd->effect_type != 13 || sd->effect_params1[0] != sd->coefs[0][6]) {
5336 for (i = 0; i < sd->effect_pcount1; i++)
5338 sd->effect_params1[i] / (1 << 16),
5339 (abs(sd->effect_params1[i]) & 0xFFFF) * 1000 / (1 << 16));
5343 sd->effect_pcount2 =
get_bits(gb, 16);
5344 if (sd->effect_pcount2 > 10) {
5347 }
else if (sd->effect_pcount2) {
5350 while (++i < sd->effect_pcount2) {
5351 sd->effect_params2[i] = get_fp_val(gb);
5353 sd->effect_params2[i] / (1 << 16),
5354 (abs(sd->effect_params2[i]) & 0xFFFF) * 1000 / (1 << 16));
5369 static void vc1_draw_sprites(
VC1Context *v, SpriteData* sd)
5371 int i, plane, row, sprite;
5372 int sr_cache[2][2] = { { -1, -1 }, { -1, -1 } };
5374 int xoff[2], xadv[2], yoff[2], yadv[2], alpha;
5378 for (i = 0; i < 2; i++) {
5379 xoff[i] = av_clip(sd->coefs[i][2], 0, v->
sprite_width-1 << 16);
5380 xadv[i] = sd->coefs[i][0];
5384 yoff[i] = av_clip(sd->coefs[i][5], 0, v->
sprite_height-1 << 16);
5387 alpha = av_clip(sd->coefs[1][6], 0, (1<<16) - 1);
5396 for (sprite = 0; sprite <= v->
two_sprites; sprite++) {
5399 int ycoord = yoff[sprite] + yadv[sprite] * row;
5400 int yline = ycoord >> 16;
5402 ysub[sprite] = ycoord & 0xFFFF;
5408 if (!(xoff[sprite] & 0xFFFF) && xadv[sprite] == 1 << 16) {
5409 src_h[sprite][0] = iplane + (xoff[sprite] >> 16) + yline * iline;
5411 src_h[sprite][1] = iplane + (xoff[sprite] >> 16) + next_line;
5413 if (sr_cache[sprite][0] != yline) {
5414 if (sr_cache[sprite][1] == yline) {
5416 FFSWAP(
int, sr_cache[sprite][0], sr_cache[sprite][1]);
5418 v->
vc1dsp.
sprite_h(v->
sr_rows[sprite][0], iplane + yline * iline, xoff[sprite], xadv[sprite], width);
5419 sr_cache[sprite][0] = yline;
5422 if (ysub[sprite] && sr_cache[sprite][1] != yline + 1) {
5424 iplane + next_line, xoff[sprite],
5425 xadv[sprite], width);
5426 sr_cache[sprite][1] = yline + 1;
5428 src_h[sprite][0] = v->
sr_rows[sprite][0];
5429 src_h[sprite][1] = v->
sr_rows[sprite][1];
5437 memcpy(dst, src_h[0][0], width);
5440 if (ysub[0] && ysub[1]) {
5442 src_h[1][0], src_h[1][1], ysub[1], alpha, width);
5443 }
else if (ysub[0]) {
5445 src_h[1][0], alpha, width);
5446 }
else if (ysub[1]) {
5448 src_h[0][0], (1<<16)-1-alpha, width);
5456 for (i = 0; i < 2; i++) {
5472 vc1_parse_sprites(v, gb, &sd);
5490 vc1_draw_sprites(v, &sd);
5510 plane ? 128 : 0, f->
linesize[plane]);
5567 for (i = 0; i < 4; i++)
5593 for (i = 0; i < 64; i++) {
5594 #define transpose(x) ((x >> 3) | ((x & 7) << 3))
5650 }
else if (count < 0) {
5657 int size, buf2_size;
5659 int seq_initialized = 0, ep_initialized = 0;
5669 for (; next < end; start = next) {
5671 size = next - start - 4;
5682 seq_initialized = 1;
5694 if (!seq_initialized || !ep_initialized) {
5748 for (i = 0; i < 4; i++)
5780 int buf_size = avpkt->
size, n_slices = 0, i, ret;
5785 const uint8_t *buf_start = buf;
5786 int mb_height, n_slices1;
5791 } *slices =
NULL, *tmp;
5813 const uint8_t *start, *end, *next;
5817 for (start = buf, end = buf + buf_size; next < end; start = next) {
5819 size = next - start - 4;
5820 if (size <= 0)
continue;
5829 tmp =
av_realloc(slices,
sizeof(*slices) * (n_slices+1));
5834 if (!slices[n_slices].buf)
5837 slices[n_slices].buf);
5842 slices[n_slices].mby_start = s->
mb_height >> 1;
5843 n_slices1 = n_slices - 1;
5854 tmp =
av_realloc(slices,
sizeof(*slices) * (n_slices+1));
5859 if (!slices[n_slices].buf)
5862 slices[n_slices].buf);
5865 slices[n_slices].mby_start =
get_bits(&slices[n_slices].gb, 9);
5871 }
else if (v->
interlace && ((buf[0] & 0xC0) == 0xC0)) {
5880 tmp =
av_realloc(slices,
sizeof(*slices) * (n_slices+1));
5885 if (!slices[n_slices].buf)
5887 buf_size3 =
vc1_unescape_buffer(divider + 4, buf + buf_size - divider - 4, slices[n_slices].buf);
5890 slices[n_slices].mby_start = s->
mb_height >> 1;
5891 n_slices1 = n_slices - 1;
6014 v->
bits = buf_size * 8;
6030 for (i = 0; i <= n_slices; i++) {
6031 if (i > 0 && slices[i - 1].mby_start >= mb_height) {
6034 "picture boundary (%d >= %d)\n", i,
6035 slices[i - 1].mby_start, mb_height);
6067 s->
start_mb_y = (i == 0) ? 0 :
FFMAX(0, slices[i-1].mby_start % mb_height);
6069 s->
end_mb_y = (i == n_slices ) ? mb_height :
FFMIN(mb_height, slices[i].mby_start % mb_height);
6071 s->
end_mb_y = (i <= n_slices1 + 1) ? mb_height :
FFMIN(mb_height, slices[i].mby_start % mb_height);
6074 s->
gb = slices[i].gb;
6104 #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
6105 if (vc1_decode_sprites(v, &s->
gb))
6127 for (i = 0; i < n_slices; i++)
6134 for (i = 0; i < n_slices; i++)
6150 #if CONFIG_VC1_DXVA2_HWACCEL
6153 #if CONFIG_VC1_VAAPI_HWACCEL
6156 #if CONFIG_VC1_VDPAU_HWACCEL
6174 .pix_fmts = vc1_hwaccel_pixfmt_list_420,
6178 #if CONFIG_WMV3_DECODER
6190 .pix_fmts = vc1_hwaccel_pixfmt_list_420,
6195 #if CONFIG_WMV3IMAGE_DECODER
6196 AVCodec ff_wmv3image_decoder = {
6197 .
name =
"wmv3image",
6206 .
flush = vc1_sprite_flush,
6214 #if CONFIG_VC1IMAGE_DECODER
6215 AVCodec ff_vc1image_decoder = {
6225 .
flush = vc1_sprite_flush,
static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
in the bitstream is reported as 00b
const int ff_vc1_ttblk_to_tt[3][8]
Table for conversion between TTBLK and TTMB.
op_pixels_func avg_vc1_mspel_pixels_tab[16]
#define VC1_TTBLK_VLC_BITS
static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n, int coded, int codingset)
Decode intra block in intra frames - should be faster than decode_intra_block.
discard all frames except keyframes
void ff_init_block_index(MpegEncContext *s)
#define VC1_IF_MBMODE_VLC_BITS
int(* start_frame)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Called at the beginning of each frame or field picture.
qpel_mc_func avg_qpel_pixels_tab[2][16]
static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n, int mquant, int ttmb, int first_block, uint8_t *dst, int linesize, int skip_block, int *ttmb_out)
Decode P block.
void(* vc1_h_s_overlap)(int16_t *left, int16_t *right)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
void(* vc1_inv_trans_4x8)(uint8_t *dest, int line_size, int16_t *block)
This structure describes decoded (raw) audio or video data.
#define VC1_ICBPCY_VLC_BITS
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
static int vc1_decode_p_mb(VC1Context *v)
Decode one P-frame MB.
int k_x
Number of bits for MVs (depends on MV range)
int reffield
if numref = 0 (1 reference) then reffield decides which
int start_mb_y
start mb_y of this thread (so current thread should process start_mb_y <= row < end_mb_y) ...
void(* sprite_v_double_onescale)(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1, const uint8_t *src2a, int alpha, int width)
const uint8_t * y_dc_scale_table
qscale -> y_dc_scale table
int coded_width
Bitstream width / height, may be different from width/height e.g.
int mv_type_is_raw
mv type mb plane is not coded
op_pixels_func avg_pixels_tab[4][4]
Halfpel motion compensation with rounding (a+b+1)>>1.
static av_always_inline int scaleforsame(VC1Context *v, int i, int n, int dim, int dir)
uint8_t dmvrange
Frame decoding info for interlaced picture.
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
#define AV_LOG_WARNING
Something somehow does not look correct.
static av_always_inline int scaleforopp_y(VC1Context *v, int n, int dir)
static const uint8_t vc1_index_decode_table[AC_MODES][185][2]
int end_mb_y
end mb_y of this thread (so current thread should process start_mb_y <= row < end_mb_y) ...
void(* vc1_v_loop_filter16)(uint8_t *src, int stride, int pq)
int max_b_frames
maximum number of B-frames between non-B-frames Note: The output will be delayed by max_b_frames+1 re...
int16_t(*[3] ac_val)[16]
used for for mpeg4 AC prediction, all 3 arrays must be continuous
static const int vc1_last_decode_table[AC_MODES]
void(* clear_block)(int16_t *block)
int tt_index
Index for Transform Type tables (to decode TTMB)
static void vc1_decode_p_blocks(VC1Context *v)
static void vc1_put_signed_blocks_clamped(VC1Context *v)
int v_edge_pos
horizontal / vertical position of the right/bottom edge (pixel replication)
#define GET_MVDATA(_dmv_x, _dmv_y)
Get MV differentials.
#define VC1_2REF_MVDATA_VLC_BITS
void ff_er_frame_end(ERContext *s)
static void vc1_mc_4mv_chroma4(VC1Context *v, int dir, int dir2, int avg)
Do motion compensation for 4-MV interlaced frame chroma macroblock (both U and V) ...
int repeat_pict
When decoding, this signals how much the picture must be delayed.
uint8_t rangeredfrm
Frame decoding info for S/M profiles only.
void(* vc1_v_overlap)(uint8_t *src, int stride)
void(* sprite_v_single)(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset, int width)
int ff_msmpeg4_decode_init(AVCodecContext *avctx)
void(* vc1_h_loop_filter16)(uint8_t *src, int stride, int pq)
void ff_print_debug_info(MpegEncContext *s, Picture *p)
Print debugging info for the given picture.
void av_log(void *avcl, int level, const char *fmt,...) av_printf_format(3
Send the specified message to the log if the level is less than or equal to the current av_log_level...
void(* add_pixels_clamped)(const int16_t *block, uint8_t *pixels, int line_size)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
uint8_t zz_8x8[4][64]
Zigzag table for TT_8x8, permuted for IDCT.
static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n, int coded, int mquant, int codingset)
Decode intra block in inter frames - more generic version than vc1_decode_i_block.
static void vc1_decode_b_blocks(VC1Context *v)
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
av_dlog(ac->avr,"%d samples - audio_convert: %s to %s (%s)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt), use_generic?ac->func_descr_generic:ac->func_descr)
uint8_t * mv_f[2]
0: MV obtained from same field, 1: opposite field
#define FF_PROFILE_VC1_ADVANCED
int fastuvmc
Rounding of qpel vector to hpel ? (not in Simple)
int end_mb_x
Horizontal macroblock limit (used only by mss2)
void(* vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, int16_t *block)
void(* vc1_v_loop_filter4)(uint8_t *src, int stride, int pq)
void ff_vc1_decode_blocks(VC1Context *v)
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
static void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
void av_freep(void *ptr)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
static int vc1_coded_block_pred(MpegEncContext *s, int n, uint8_t **coded_block_ptr)
enum AVDiscard skip_frame
#define VC1_4MV_BLOCK_PATTERN_VLC_BITS
static void vc1_apply_p_loop_filter(VC1Context *v)
const uint16_t ff_vc1_b_field_mvpred_scales[7][4]
void ff_mpeg_draw_horiz_band(MpegEncContext *s, int y, int h)
int refdist
distance of the current picture from reference
uint8_t * acpred_plane
AC prediction flags bitplane.
static int decode(MimicContext *ctx, int quality, int num_coeffs, int is_iframe)
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static const AVProfile profiles[]
static int vc1_decode_b_mb_intfr(VC1Context *v)
Decode one B-frame MB (in interlaced frame B picture)
int first_pic_header_flag
av_cold int ff_vc1_init_common(VC1Context *v)
Init VC-1 specific tables and VC1Context members.
int interlace
Progressive/interlaced (RPTFTM syntax element)
int y_ac_table_index
Luma index from AC2FRM element.
qpel_mc_func(* qpel_put)[16]
int c_ac_table_index
AC coding set indexes.
const int ff_vc1_ac_sizes[AC_MODES]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
void(* vc1_inv_trans_8x8)(int16_t *b)
const char * name
Name of the codec implementation.
int ttfrm
Transform type info present at frame level.
Picture current_picture
copy of the current picture structure.
int codingset2
index of current table set from 11.8 to use for chroma block decoding
int16_t bfraction
Relative position % anchors=> how to scale MVs.
#define CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
int profile
Sequence header data for all Profiles TODO: choose between ints, uint8_ts and monobit flags...
static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
static int get_bits_count(const GetBitContext *s)
static av_always_inline int scaleforsame_x(VC1Context *v, int n, int dir)
uint8_t * forward_mb_plane
bitplane for "forward" MBs
uint8_t last_luty[2][256]
int mb_height
number of MBs horizontally & vertically
int ff_vc1_decode_sequence_header(AVCodecContext *avctx, VC1Context *v, GetBitContext *gb)
Decode Simple/Main Profiles sequence header.
static void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
Reconstruct motion vector for B-frame and do motion compensation.
uint8_t * over_flags_plane
Overflags bitplane.
static void vc1_decode_b_mb(VC1Context *v)
Decode one B-frame MB (in Main profile)
const int8_t ff_vc1_adv_interlaced_4x8_zz[32]
static void ff_update_block_index(MpegEncContext *s)
uint8_t last_lutuv[2][256]
lookup tables used for intensity compensation
uint8_t ttmbf
Transform type flag.
int k_y
Number of bits for MVs (depends on MV range)
void(* vc1_h_loop_filter8)(uint8_t *src, int stride, int pq)
static int get_bits_left(GetBitContext *gb)
int16_t * dc_val[3]
used for mpeg4 DC prediction, all 3 arrays must be continuous
int dmb_is_raw
direct mb plane is raw
static int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n, int16_t **dc_val_ptr, int *dir_ptr)
Get predicted DC value for I-frames only prediction dir: left=0, top=1.
#define FF_PROFILE_VC1_SIMPLE
#define VC1_CBPCY_P_VLC_BITS
void(* vc1_inv_trans_4x4)(uint8_t *dest, int line_size, int16_t *block)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
int has_b_frames
Size of the frame reordering buffer in the decoder.
void av_free(void *ptr)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc(). ...
int overlap
overlapped transforms in use
in the bitstream is reported as 11b
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
#define CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
const int8_t ff_vc1_simple_progressive_4x4_zz[16]
void(* clear_blocks)(int16_t *blocks)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static void vc1_mc_1mv(VC1Context *v, int dir)
Do motion compensation over 1 macroblock Mostly adapted hpel_motion and qpel_motion from mpegvideo...
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
static av_cold int vc1_decode_init(AVCodecContext *avctx)
Initialize a VC1/WMV3 decoder.
#define GET_MQUANT()
Get macroblock-level quantizer scale.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
uint8_t * edge_emu_buffer
temporary buffer for if MVs point to out-of-frame data
void(* vc1_v_loop_filter8)(uint8_t *src, int stride, int pq)
#define IS_MARKER(state, i, buf, buf_size)
int quarter_sample
1->qpel, 0->half pel ME/MC
int low_delay
no reordering needed / has no b-frames
qpel_mc_func put_qpel_pixels_tab[2][16]
void ff_mpv_common_end(MpegEncContext *s)
Libavcodec external API header.
AVPixelFormat
Pixel format.
static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n, int dir)
void(* vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, int16_t *block)
static void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y, int mvn, int r_x, int r_y, uint8_t *is_intra, int dir)
Predict and set motion vector for interlaced frame picture MBs.
const uint8_t * zz_8x4
Zigzag scan table for TT_8x4 coding mode.
int res_rtm_flag
reserved, set to 1
uint8_t * blk_mv_type
0: frame MV, 1: field MV (interlaced frame)
static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
Decode one AC coefficient.
void ff_mpeg_flush(AVCodecContext *avctx)
const int8_t ff_vc1_adv_interlaced_4x4_zz[16]
int ff_vc1_parse_frame_header_adv(VC1Context *v, GetBitContext *gb)
#define FF_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
static av_always_inline int scaleforopp(VC1Context *v, int n, int dim, int dir)
int cur_field_type
0: top, 1: bottom
const uint8_t ff_wmv1_scantable[WMV1_SCANTABLE_COUNT][64]
const uint8_t * zz_4x8
Zigzag scan table for TT_4x8 coding mode.
static av_always_inline int scaleforopp_x(VC1Context *v, int n)
enum AVPictureType pict_type
Picture type of the frame.
av_cold int ff_vc1_decode_end(AVCodecContext *avctx)
Close a VC1/WMV3 decoder.
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
void * av_realloc(void *ptr, size_t size) 1(2)
Allocate or reallocate a block of memory.
av_cold void ff_vc1_init_transposed_scantables(VC1Context *v)
int next_p_frame_damaged
set if the next p frame is damaged, to avoid showing trashed b frames
uint8_t * blk_mv_type_base
av_cold void ff_intrax8_common_init(IntraX8Context *w, MpegEncContext *const s)
Initialize IntraX8 frame decoder.
int field_mode
1 for interlaced field pictures
av_cold void ff_intrax8_common_end(IntraX8Context *w)
Destroy IntraX8 frame structure.
static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n, int coded, int codingset, int mquant)
Decode intra block in intra frames - should be faster than decode_intra_block.
int width
picture width / height.
#define VC1_SUBBLKPAT_VLC_BITS
uint8_t * mbskip_table
used to avoid copy if macroblock skipped (for black regions for example) and used for b-frame encodin...
void(* vc1_h_overlap)(uint8_t *src, int stride)
uint8_t mv_mode
Frame decoding info for all profiles.
int16_t(*[2] motion_val)[2]
Picture * current_picture_ptr
pointer to the current picture
void ff_mpeg_er_frame_start(MpegEncContext *s)
static void vc1_decode_skip_blocks(VC1Context *v)
void * av_malloc(size_t size) av_malloc_attrib 1(1)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
void(* emulated_edge_mc)(uint8_t *buf, const uint8_t *src, ptrdiff_t buf_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
av_cold int ff_vc1_decode_init_alloc_tables(VC1Context *v)
int ff_vc1_parse_frame_header(VC1Context *v, GetBitContext *gb)
static const int offset_table[6]
static int median4(int a, int b, int c, int d)
static int vc1_decode_p_mb_intfr(VC1Context *v)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
int block_last_index[12]
last non zero coefficient in block
void(* vc1_v_s_overlap)(int16_t *top, int16_t *bottom)
#define FF_PROFILE_VC1_MAIN
static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x, int *dmv_y, int *pred_flag)
#define FF_PROFILE_UNKNOWN
static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
h264_chroma_mc_func avg_h264_chroma_pixels_tab[3]
const uint16_t ff_vc1_field_mvpred_scales[2][7][4]
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
int16_t(* luma_mv_base)[2]
int block_index[6]
index to current MB in block based arrays with edges
VLC * cbpcy_vlc
CBPCY VLC table.
static int decode210(GetBitContext *gb)
if(ac->has_optimized_func)
static const float pred[4]
uint8_t * sr_rows[2][2]
Sprite resizer line cache.
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
void(* vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, int16_t *block)
static const int8_t mv[256][2]
h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3]
static void vc1_loop_filter_iblk(VC1Context *v, int pq)
static void vc1_interp_mc(VC1Context *v)
Motion compensation for direct or interpolated blocks in B-frames.
int first_slice_line
used in mpeg4 too to handle resync markers
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
static const int offset_table1[9]
#define AV_LOG_INFO
Standard information.
#define FF_PROFILE_VC1_COMPLEX
int res_sprite
Simple/Main Profile sequence header.
int top_blk_sh
Either 3 or 0, positions of l/t in blk[].
void(* sprite_v_double_noscale)(uint8_t *dst, const uint8_t *src1a, const uint8_t *src2a, int alpha, int width)
ptrdiff_t linesize
line size, in bytes, may be different from width
av_cold void ff_blockdsp_init(BlockDSPContext *c, AVCodecContext *avctx)
const int8_t ff_vc1_adv_interlaced_8x8_zz[64]
static const uint8_t vc1_delta_run_table[AC_MODES][57]
static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir, int avg)
Do motion compensation for 4-MV macroblock - luminance block.
main external API structure.
static void close(AVCodecParserContext *s)
static int vc1_decode_p_mb_intfi(VC1Context *v)
uint8_t * coded_block
used for coded block pattern prediction (msmpeg4v3, wmv1)
int height
picture size. must be a multiple of 16
static void vc1_decode_b_mb_intfi(VC1Context *v)
Decode one B-frame MB (in interlaced field B picture)
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
static void init_block_index(VC1Context *v)
HW decoding through VA API, Picture.data[3] contains a vaapi_render_state struct which contains the b...
op_pixels_func put_pixels_tab[4][4]
Halfpel motion compensation with rounding (a+b+1)>>1.
const uint8_t ff_vc1_mbmode_intfrp[2][15][4]
static unsigned int get_bits1(GetBitContext *s)
void(* vc1_inv_trans_8x4)(uint8_t *dest, int line_size, int16_t *block)
int fmb_is_raw
forward mb plane is raw
static void skip_bits(GetBitContext *s, int n)
#define MB_INTRA_VLC_BITS
void(* sprite_v_double_twoscale)(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1, const uint8_t *src2a, const uint8_t *src2b, int offset2, int alpha, int width)
static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
op_pixels_func put_no_rnd_pixels_tab[2][4]
Halfpel motion compensation with no rounding (a+b)>>1.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
#define VC1_2MV_BLOCK_PATTERN_VLC_BITS
static int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n, int a_avail, int c_avail, int16_t **dc_val_ptr, int *dir_ptr)
Get predicted DC value prediction dir: left=0, top=1.
ptrdiff_t uvlinesize
line size, for chroma in bytes, may be different from width
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
int skip_is_raw
skip mb plane is not coded
int ff_mpv_frame_start(MpegEncContext *s, AVCodecContext *avctx)
generic function called after decoding the header and before a frame is decoded.
int ff_intrax8_decode_picture(IntraX8Context *const w, int dquant, int quant_offset)
Decode single IntraX8 frame.
uint8_t next_lutuv[2][256]
lookup tables used for intensity compensation
void(* put_pixels_clamped)(const int16_t *block, uint8_t *pixels, int line_size)
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
int ref_field_type[2]
forward and backward reference field type (top or bottom)
uint8_t * direct_mb_plane
bitplane for "direct" MBs
static const uint8_t vc1_last_delta_run_table[AC_MODES][10]
int pict_type
AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ...
static int vc1_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Decode a VC1/WMV3 frame.
uint8_t * mv_type_mb_plane
bitplane for mv_type == (4MV)
int numref
number of past field pictures used as reference
const int32_t ff_vc1_dqscale[63]
h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3]
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
const uint8_t * c_dc_scale_table
qscale -> c_dc_scale table
qpel_mc_func(* qpel_avg)[16]
int mv[2][4][2]
motion vectors for a macroblock first coordinate : 0 = forward 1 = backward second " : depend...
int b8_stride
2*mb_width+1 used for some 8x8 block arrays to allow simple addressing
in the bitstream is reported as 10b
Picture * next_picture_ptr
pointer to the next picture (for bidir pred)
struct AVCodecContext * avctx
static const int offset_table2[9]
discard all non reference
static void vc1_decode_i_blocks(VC1Context *v)
Decode blocks of I-frame.
int pqindex
raw pqindex used in coding set selection
static const uint8_t vc1_last_delta_level_table[AC_MODES][44]
#define VC1_1REF_MVDATA_VLC_BITS
#define FFSWAP(type, a, b)
common internal api header.
int mb_stride
mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 ...
static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
#define CODEC_FLAG_GRAY
Only decode/encode grayscale.
static enum AVPixelFormat vc1_hwaccel_pixfmt_list_420[]
#define VC1_TTMB_VLC_BITS
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
static const int size_table[6]
enum FrameCodingMode fcm
Frame decoding info for Advanced profile.
Picture last_picture
copy of the previous picture structure.
uint8_t dquantfrm
pquant parameters
uint8_t next_luty[2][256]
Picture * last_picture_ptr
pointer to the previous picture.
int res_fasttx
reserved, always 1
enum AVDiscard skip_loop_filter
int * ttblk
Transform type at the block level.
enum AVPixelFormat * pix_fmts
array of supported pixel formats, or NULL if unknown, array is terminated by -1
const struct AVCodec * codec
static av_cold int init(AVCodecParserContext *s)
VLC ff_vc1_ac_coeff_table[8]
int ff_vc1_decode_entry_point(AVCodecContext *avctx, VC1Context *v, GetBitContext *gb)
#define VC1_INTFR_4MV_MBMODE_VLC_BITS
uint8_t pquantizer
Uniform (over sequence) quantizer in use.
h264_chroma_mc_func put_h264_chroma_pixels_tab[3]
static void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t *is_intra, int pred_flag, int dir)
Predict and set motion vector.
AVFrame * sprite_output_frame
void ff_mpv_frame_end(MpegEncContext *s)
struct AVHWAccel * hwaccel
Hardware accelerator in use.
const int8_t ff_vc1_adv_interlaced_8x4_zz[32]
int16_t(* block)[64]
points to one of the following blocks
op_pixels_func avg_no_rnd_pixels_tab[4]
Halfpel motion compensation with no rounding (a+b)>>1.
uint8_t(* curr_luty)[256]
static int decode012(GetBitContext *gb)
VLC_TYPE(* table)[2]
code, bits
Picture next_picture
copy of the next picture structure.
int key_frame
1 -> keyframe, 0-> not
static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
Do motion compensation for 4-MV macroblock - both chroma blocks.
void(* put_signed_pixels_clamped)(const int16_t *block, uint8_t *pixels, int line_size)
static void vc1_decode_i_blocks_adv(VC1Context *v)
Decode blocks of I-frame for advanced profile.
H264ChromaContext h264chroma
static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
void(* vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, int16_t *block)
int level
Advanced Profile.
void(* vc1_h_loop_filter4)(uint8_t *src, int stride, int pq)
int flags
AVCodecContext.flags (HQ, MV4, ...)
int brfd
reference frame distance (forward or backward)
uint32_t * mb_type
types and macros are defined in mpegutils.h
uint8_t mv_mode2
Secondary MV coding mode (B frames)
int new_sprite
Frame decoding info for sprite modes.
av_cold void ff_qpeldsp_init(QpelDSPContext *c)
int codingset
index of current table set from 11.8 to use for luma block decoding
void(* sprite_h)(uint8_t *dst, const uint8_t *src, int offset, int advance, int count)
int(* decode_slice)(AVCodecContext *avctx, const uint8_t *buf, uint32_t buf_size)
Callback for each slice.
int(* end_frame)(AVCodecContext *avctx)
Called at the end of each frame or field picture.
#define VC1_INTFR_NON4MV_MBMODE_VLC_BITS
This structure stores compressed data.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
VLC ff_msmp4_dc_luma_vlc[2]
VLC ff_vc1_subblkpat_vlc[3]
uint8_t halfpq
Uniform quant over image and qp+.5.
static void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
static const uint8_t vc1_delta_level_table[AC_MODES][31]
uint8_t((* curr_lutuv)[256]
static av_always_inline const uint8_t * find_next_marker(const uint8_t *src, const uint8_t *end)
Find VC-1 marker in buffer.
void * av_mallocz(size_t size) av_malloc_attrib 1(1)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer. ...
VLC ff_msmp4_dc_chroma_vlc[2]
op_pixels_func put_vc1_mspel_pixels_tab[16]