Library AAC_tactics.Instances
Require List.
Require Arith NArith Max Min.
Require ZArith Zminmax.
Require QArith Qminmax.
Require Relations.
Require Export AAC.
Instances for aac_rewrite.
Lemma eq_subr {X} {R} `{@Reflexive X R}: subrelation eq R.
Proof. intros x y →. reflexivity. Qed.
Module Peano.
Import Arith NArith Max Min.
Instance aac_plus_Assoc : Associative eq plus := plus_assoc.
Instance aac_plus_Comm : Commutative eq plus := plus_comm.
Instance aac_mult_Comm : Commutative eq mult := mult_comm.
Instance aac_mult_Assoc : Associative eq mult := mult_assoc.
Instance aac_min_Comm : Commutative eq min := min_comm.
Instance aac_min_Assoc : Associative eq min := min_assoc.
Instance aac_max_Comm : Commutative eq max := max_comm.
Instance aac_max_Assoc : Associative eq max := max_assoc.
Instance aac_one : Unit eq mult 1 := Build_Unit eq mult 1 mult_1_l mult_1_r.
Instance aac_zero_plus : Unit eq plus O := Build_Unit eq plus (O) plus_0_l plus_0_r.
Instance aac_zero_max : Unit eq max O := Build_Unit eq max 0 max_0_l max_0_r.
Instance preorder_le : PreOrder le := Build_PreOrder _ le_refl le_trans.
Instance lift_le_eq : AAC_lift le eq := Build_AAC_lift eq_equivalence _.
End Peano.
Module Z.
Import ZArith Zminmax.
Open Scope Z_scope.
Instance aac_Zplus_Assoc : Associative eq Zplus := Zplus_assoc.
Instance aac_Zplus_Comm : Commutative eq Zplus := Zplus_comm.
Instance aac_Zmult_Comm : Commutative eq Zmult := Zmult_comm.
Instance aac_Zmult_Assoc : Associative eq Zmult := Zmult_assoc.
Instance aac_Zmin_Comm : Commutative eq Zmin := Zmin_comm.
Instance aac_Zmin_Assoc : Associative eq Zmin := Zmin_assoc.
Instance aac_Zmax_Comm : Commutative eq Zmax := Zmax_comm.
Instance aac_Zmax_Assoc : Associative eq Zmax := Zmax_assoc.
Instance aac_one : Unit eq Zmult 1 := Build_Unit eq Zmult 1 Zmult_1_l Zmult_1_r.
Instance aac_zero_Zplus : Unit eq Zplus 0 := Build_Unit eq Zplus 0 Zplus_0_l Zplus_0_r.
Instance preorder_Zle : PreOrder Zle := Build_PreOrder _ Zle_refl Zle_trans.
Instance lift_le_eq : AAC_lift Zle eq := Build_AAC_lift eq_equivalence _.
End Z.
Module Lists.
Import List.
Instance aac_append_Assoc {A} : Associative eq (@app A) := @app_assoc A.
Instance aac_nil_append {A} : @Unit (list A) eq (@app A) (@nil A) := Build_Unit _ (@app A) (@nil A) (@app_nil_l A) (@app_nil_r A).
Instance aac_append_Proper {A} : Proper (eq ==> eq ==> eq) (@app A).
Proof.
repeat intro.
subst.
reflexivity.
Qed.
End Lists.
Module N.
Import NArith.
Open Scope N_scope.
Instance aac_Nplus_Assoc : Associative eq Nplus := Nplus_assoc.
Instance aac_Nplus_Comm : Commutative eq Nplus := Nplus_comm.
Instance aac_Nmult_Comm : Commutative eq Nmult := Nmult_comm.
Instance aac_Nmult_Assoc : Associative eq Nmult := Nmult_assoc.
Instance aac_Nmin_Comm : Commutative eq Nmin := N.min_comm.
Instance aac_Nmin_Assoc : Associative eq Nmin := N.min_assoc.
Instance aac_Nmax_Comm : Commutative eq Nmax := N.max_comm.
Instance aac_Nmax_Assoc : Associative eq Nmax := N.max_assoc.
Instance aac_one : Unit eq Nmult (1)%N := Build_Unit eq Nmult (1)%N Nmult_1_l Nmult_1_r.
Instance aac_zero : Unit eq Nplus (0)%N := Build_Unit eq Nplus (0)%N Nplus_0_l Nplus_0_r.
Instance aac_zero_max : Unit eq Nmax 0 := Build_Unit eq Nmax 0 N.max_0_l N.max_0_r.
Instance preorder_le : PreOrder Nle := Build_PreOrder Nle N.le_refl N.le_trans.
Instance lift_le_eq : AAC_lift Nle eq := Build_AAC_lift eq_equivalence _.
End N.
Module P.
Import NArith.
Open Scope positive_scope.
Instance aac_Pplus_Assoc : Associative eq Pplus := Pplus_assoc.
Instance aac_Pplus_Comm : Commutative eq Pplus := Pplus_comm.
Instance aac_Pmult_Comm : Commutative eq Pmult := Pmult_comm.
Instance aac_Pmult_Assoc : Associative eq Pmult := Pmult_assoc.
Instance aac_Pmin_Comm : Commutative eq Pmin := Pos.min_comm.
Instance aac_Pmin_Assoc : Associative eq Pmin := Pos.min_assoc.
Instance aac_Pmax_Comm : Commutative eq Pmax := Pos.max_comm.
Instance aac_Pmax_Assoc : Associative eq Pmax := Pos.max_assoc.
Instance aac_one : Unit eq Pmult 1 := Build_Unit eq Pmult 1 _ Pmult_1_r.
intros; reflexivity. Qed. Instance aac_one_max : Unit eq Pmax 1 := Build_Unit eq Pmax 1 Pos.max_1_l Pos.max_1_r.
Instance preorder_le : PreOrder Ple := Build_PreOrder Ple Pos.le_refl Pos.le_trans.
Instance lift_le_eq : AAC_lift Ple eq := Build_AAC_lift eq_equivalence _.
End P.
Module Q.
Import QArith Qminmax.
Instance aac_Qplus_Assoc : Associative Qeq Qplus := Qplus_assoc.
Instance aac_Qplus_Comm : Commutative Qeq Qplus := Qplus_comm.
Instance aac_Qmult_Comm : Commutative Qeq Qmult := Qmult_comm.
Instance aac_Qmult_Assoc : Associative Qeq Qmult := Qmult_assoc.
Instance aac_Qmin_Comm : Commutative Qeq Qmin := Q.min_comm.
Instance aac_Qmin_Assoc : Associative Qeq Qmin := Q.min_assoc.
Instance aac_Qmax_Comm : Commutative Qeq Qmax := Q.max_comm.
Instance aac_Qmax_Assoc : Associative Qeq Qmax := Q.max_assoc.
Instance aac_one : Unit Qeq Qmult 1 := Build_Unit Qeq Qmult 1 Qmult_1_l Qmult_1_r.
Instance aac_zero_Qplus : Unit Qeq Qplus 0 := Build_Unit Qeq Qplus 0 Qplus_0_l Qplus_0_r.
Instance preorder_le : PreOrder Qle := Build_PreOrder Qle Qle_refl Qle_trans.
Instance lift_le_eq : AAC_lift Qle Qeq := Build_AAC_lift QOrderedType.QOrder.TO.eq_equiv _.
End Q.
Module Prop_ops.
Instance aac_or_Assoc : Associative iff or. Proof. unfold Associative; tauto. Qed.
Instance aac_or_Comm : Commutative iff or. Proof. unfold Commutative; tauto. Qed.
Instance aac_and_Assoc : Associative iff and. Proof. unfold Associative; tauto. Qed.
Instance aac_and_Comm : Commutative iff and. Proof. unfold Commutative; tauto. Qed.
Instance aac_True : Unit iff or False. Proof. constructor; firstorder. Qed.
Instance aac_False : Unit iff and True. Proof. constructor; firstorder. Qed.
Program Instance aac_not_compat : Proper (iff ==> iff) not.
Solve All Obligations with firstorder.
Instance lift_impl_iff : AAC_lift Basics.impl iff := Build_AAC_lift _ _.
End Prop_ops.
Module Bool.
Instance aac_orb_Assoc : Associative eq orb. Proof. unfold Associative; firstorder. Qed.
Instance aac_orb_Comm : Commutative eq orb. Proof. unfold Commutative; firstorder. Qed.
Instance aac_andb_Assoc : Associative eq andb. Proof. unfold Associative; firstorder. Qed.
Instance aac_andb_Comm : Commutative eq andb. Proof. unfold Commutative; firstorder. Qed.
Instance aac_true : Unit eq orb false. Proof. constructor; firstorder. Qed.
Instance aac_false : Unit eq andb true. Proof. constructor; intros [|];firstorder. Qed.
Instance negb_compat : Proper (eq ==> eq) negb. Proof. intros [|] [|]; auto. Qed.
End Bool.
Module Relations.
Import Relations.Relations.
Section defs.
Variable T : Type.
Variables R S: relation T.
Definition inter : relation T := fun x y ⇒ R x y ∧ S x y.
Definition compo : relation T := fun x y ⇒ ∃ z : T, R x z ∧ S z y.
Definition negr : relation T := fun x y ⇒ ¬ R x y.
Definition bot : relation T := fun _ _ ⇒ False.
Definition top : relation T := fun _ _ ⇒ True.
End defs.
Instance eq_same_relation T : Equivalence (same_relation T). Proof. firstorder. Qed.
Instance aac_union_Comm T : Commutative (same_relation T) (union T). Proof. unfold Commutative; compute; intuition. Qed.
Instance aac_union_Assoc T : Associative (same_relation T) (union T). Proof. unfold Associative; compute; intuition. Qed.
Instance aac_bot T : Unit (same_relation T) (union T) (bot T). Proof. constructor; compute; intuition. Qed.
Instance aac_inter_Comm T : Commutative (same_relation T) (inter T). Proof. unfold Commutative; compute; intuition. Qed.
Instance aac_inter_Assoc T : Associative (same_relation T) (inter T). Proof. unfold Associative; compute; intuition. Qed.
Instance aac_top T : Unit (same_relation T) (inter T) (top T). Proof. constructor; compute; intuition. Qed.
Instance aac_compo T : Associative (same_relation T) (compo T). Proof. unfold Associative; compute; firstorder. Qed.
Instance aac_eq T : Unit (same_relation T) (compo T) (eq). Proof. compute; firstorder subst; trivial. Qed.
Instance negr_compat T : Proper (same_relation T ==> same_relation T) (negr T).
Proof. compute. firstorder. Qed.
Instance transp_compat T : Proper (same_relation T ==> same_relation T) (transp T).
Proof. compute. firstorder. Qed.
Instance clos_trans_incr T : Proper (inclusion T ==> inclusion T) (clos_trans T).
Proof.
intros R S H x y Hxy. induction Hxy.
constructor 1. apply H. assumption.
econstructor 2; eauto 3.
Qed.
Instance clos_trans_compat T: Proper (same_relation T ==> same_relation T) (clos_trans T).
Proof. intros R S H; split; apply clos_trans_incr, H. Qed.
Instance clos_refl_trans_incr T : Proper (inclusion T ==> inclusion T) (clos_refl_trans T).
Proof.
intros R S H x y Hxy. induction Hxy.
constructor 1. apply H. assumption.
constructor 2.
econstructor 3; eauto 3.
Qed.
Instance clos_refl_trans_compat T : Proper (same_relation T ==> same_relation T) (clos_refl_trans T).
Proof. intros R S H; split; apply clos_refl_trans_incr, H. Qed.
Instance preorder_inclusion T : PreOrder (inclusion T).
Proof. constructor; unfold Reflexive, Transitive, inclusion; intuition. Qed.
Instance lift_inclusion_same_relation T: AAC_lift (inclusion T) (same_relation T) :=
Build_AAC_lift (eq_same_relation T) _.
Proof. firstorder. Qed.
End Relations.
Module All.
Export Peano.
Export Z.
Export P.
Export N.
Export Prop_ops.
Export Bool.
Export Relations.
End All.