
NFSTRACE
User and developer manual

Version 0.3.1

Copyright © 2014 EPAM Systems



NFSTRACE User and developer manual

EPAM Systems

Copyright © 2014 EPAM Systems

This documentation is free software; you can redistribute it and/or modify it under 
the terms of the GNU General Public License version 2 as published by the Free 
Software Foundation.

This program is distributed in the hope that it  will  be useful, but WITHOUT ANY 
WARRANTY; without even the implied warranty  of MERCHANTABILITY or FITNESS 
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this 
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth 
Floor, Boston, MA 02110-1301 USA.

For more details see the file LICENSE in the source of nfstrace.

This  manual  provides  basic  instructions on how to use  nfstrace  to monitor  NFS 
activity and how to develop pluggable analysis modules.



Table of Contents
1 Introduction....................................................................................................................4

1.1 Portability................................................................................................................4

2 Usage...............................................................................................................................5

2.1 Options....................................................................................................................5

2.2 Running modes.......................................................................................................6

2.3 Packets filtration.....................................................................................................7

2.4 Dump file format....................................................................................................7

2.5 Usage examples......................................................................................................7

2.5.1 Available options............................................................................................7

2.5.2 Online tracing..................................................................................................7

2.5.3 Online analysis................................................................................................8

2.5.4 Online dumping and offline analysis............................................................8

2.5.5 Online dumping, compression and offline analysis....................................8

2.5.6 Online dumping with file limit, compression and offline analysis.............9

2.5.7 Visualization..................................................................................................10

3 Analyzers.......................................................................................................................11

3.1 Operation Breakdown Analyzer (libbreakdown.so)...........................................11

4 Implementation details................................................................................................13

4.1 Payload filtration..................................................................................................13

4.2 Pluggable analysis modules.................................................................................14

4.3 General schema....................................................................................................14

5 Glossary.........................................................................................................................16



1 Introduction
nfstrace performs  live  Ethernet  1  Gbps  –  10  Gbps  packets  capturing  and  helps  to 
determine  NFS  procedures  in  raw  network  traffic.  Furthermore,  it  performs  filtration, 
dumping, compression, statistical analysis, visualization and provides the API for custom 
pluggable analysis modules. 

nfstrace captures raw packets from an Ethernet interface using libpcap interface to Linux 
(LSF) or FreeBSD (BPF) implementations. At the moment it is assumed that libpcap delivers 
correct  TCP  and  UDP packets.  Assembling  of  IP  packets  from ethernet  frames  and  IP 
packets defragmentation are performed in the operating system's kernel.

The application has been tested on the workstations with integrated 1 Gbps NICs (Ethernet 
1000baseT/Full).

Currently nfstrace supports the following protocols:

Ethernet  IPv4 | IPv6  UDP | TCP  NFSv3 | NFSv4➔ ➔ ➔

1.1 Portability

The application has been developed and tested on GNU/Linux (Fedora 20, OpenSUSE 13.2, 
Ubuntu 14.10,  CentOS 7,  Arch Linux,  Alt  Linux 7.0.4)  and FreeBSD (FreeBSD 10.1).  It  is  
written  in  C++11  programming  language  and  uses  standard  POSIX  interfaces  and  the 
following libraries: libpthread, libpcap, libstdc++.

4



2 Usage

2.1 Options

-m, --mode=live|dump|drain|stat
Set the running mode (see the description below) (default: live).

-i, --interface=INTERFACE
Listen interface, it is required for live and dump modes (default:  searches 
for the lowest numbered, configured up interface (except loopback)).

-f, --filtration="filter"
Specify the packet filter in BPF syntax; for the expression syntax, see pcap-
filter(7) (default: "port 2049").

-s, --snaplen=1..65535
Set  the  max  length  of  captured  raw  packet  (bigger  packets  will  be 
truncated). Can be used only for UDP (default: 65535).

-t, --timeout=milliseconds
Set the read timeout that will be used while capturing (default: 100).

-b, --bsize=MBytes
Set the size of the operating system capture buffer in MBytes; note that this 
option is crucial for capturing performance (default: 20).

-p, --promisc
Put the capturing interface into promiscuous mode (default: true).

-d, --direction=in|out|inout
Set the direction for which packets will be captured (default: inout).

-a, --analysis=PATH#opt1,opt2=val,...
Specify the path to an analysis module and set its options (if any).

-I, --ifile=PATH
Specify the input file for stat mode, '-' means stdin (default:  nfstrace-
{filter}.pcap).

-O, --ofile=PATH
Specify  the  output  file  for  dump  mode,  '-'  means  stdout (default: 
nfstrace-{filter}.pcap).

5



--log=PATH
Specify the log file (default: nfstrace.log.{timestamp}).

-C, --command="shell command"
Execute command for each dumped file.

-D, --dump-size=MBytes
Set the size of dumping file portion, 0 means no limit (default: 0).

-L, --list
List all available network interfaces and exit; please note that this option is 
not  supported  unless  nfstrace was  built  against  the  recent  version  of 
libpcap that supports the pcap_findalldevs() function.

-M, --msg-header=1..4000
Truncate RPC messages to this limit (specified in bytes) before passing to a 
pluggable analysis module (default: 512).

-Q, --qcapacity=1..65535
Set the initial capacity of the queue with RPC messages (default: 4096).

-T, --trace
Print collected NFSv3 or NFSv4 procedures, true if no modules were passed 
with -a option.

-Z, --droproot=username
Drop root privileges after opening the capture device.

-v, --verbose=0|1|2
Specify verbosity level (default: 1).

-h, --help
Print help message and usage for modules passed with -a option, then exit.

2.2 Running modes

nfstrace can operate in four different modes:

• online  analysis  (--mode=live):  performs  online  capturing,  filtration  and  live 
analysis of detected NFS procedures using a pluggable analysis module or prints 
out them to stdout (-T or --trace options);

• online dumping (--mode=dump):  performs online traffic  capturing,  filtration and 
dumping to the output file (specified with -O or --ofile options);

6



• offline  analysis  (--mode=stat):  performs  offline  filtration  of  the  .pcap that 
contains  previously  captured  traces  and  performs  analysis  using  a  pluggable 
analysis  module  or  prints  found  NFS  procedures  to  stdout (-T or  –trace 
options);

• offline dumping (--mode=drain): performs a reading of traffic from the .pcap file 
(specified with -I or --ifile options), filtration, dumping to the output .pcap file 
(specified with  -O or  --ofile options) and removing all the packets that are not 
related to NFS procedures.

2.3 Packets filtration

Internally  nfstrace uses libpcap that provides a portable interface to the native system 
API  for  capturing  network traffic.  By  so doing,  filtration  is  performed in  the  operating 
system's kernel. nfstrace provides a special option (-f or –-filtration) for specifying 
custom filters in BPF syntax.

The default  BPF filter in  nfstrace is  port 2049, which means that each packet that is 
delivered to user-space from the kernel satisfies the following conditions: it has IPv4 or  
IPv6 header and it has TCP and UDP header with source or destination port number equals 
to 2049 (default NFS port).

The reality is that this filter is very heavy and support of IPv6 is experimental, so if you 
want to reach faster filtration of IPv4-only traffic we suggest to use the following BPF filter: 
ip and port 2049.

2.4 Dump file format

nfstrace uses libpcap file format for input and output files so any external tool (e.g. 
Wireshark) can be used in order to inspect filtered traces.

2.5 Usage examples

In this sections some use cases will be explained. Every next example inherit something 
from the previous ones, so we suggest to read all of them from the beginning.

2.5.1 Available options

The following command demonstrates  available  options of  the application and plugged 
analysis modules (attached with --analysis or -a options). Note that you can pass more 
than one module here.

nfstrace –-help --analysis=libbreakdown.so

7



2.5.2 Online tracing

The following command will run nfstrace in online analysis mode (specified with --mode 
or -m options) without a pluggable analysis module. It will capture NFS traffic transferred 
over TCP or UDP with source or destination port number equals to 2049 and will simply 
print them out to  stdout (-T or  --trace options). Capturing is over when  nfstrace 
receives SIGINT (Control-C).

Note that capturing from network interface requires superuser privileges.

nfstrace -–mode=live                     \
         --filtration="ip and port 2049" \
         -T

2.5.3 Online analysis

The following command demonstrates running nfstrace in online analysis mode. Just like 
in the previous example it will capture NFS traffic transferred over TCP or UDP with source 
or destination port number equals to 2049 and then it will perform Operation Breakdown 
analysis using pluggable analysis module libbreakdown.so.

nfstrace –-mode=live                     \
         -–filtration=”ip and port 2049” \
         --analysis=libbreakdown.so

2.5.4 Online dumping and offline analysis

The following example demonstrates  running  nfstrace in  online dumping and offline 
analysis modes.

At  first  nfstrace will  capture NFS traffic  transferred over  TCP or  UDP with source or 
destination port number equals to 2049 and will dump captured packets to dump.pcap file 
(specified with --ofile or -O options).

At  the second run  nfstrace will  perform offline  Operation  Breakdown analysis  using 
pluggable analysis module libbreakdown.so.

# Dump captured packets to dump.pcap
nfstrace –-mode=dump                     \
         --filtration="ip and port 2049" \
         -O dump.pcap 

# Analyse dump.pcap using libbreakdown.so
nfstrace --mode=stat                     \
         -I dump.pcap                    \
         --analysis=libbreakdown.so

2.5.5 Online dumping, compression and offline analysis

The following example demonstrates  running  nfstrace in  online dumping and offline 
analysis modes. Since dump file can easily exhaust disk space, compression makes sense.

8



At first  nfstrace will  capture NFS traffic  transferred over  TCP or  UDP with source or 
destination port number equals to 2049 and will dump captured packets to  dump.pcap 
file.

Note  that  compression  is  done  by  the  external  tool  (executed  in  script  passed  with 
--command or -C  options) and it will be executed when capturing is done. The output file 
can be inspected using some external tool as described in [2.4].

At the second run nfstrace will perform offline analysis. Again, the external tool (bzcat 
in this example) is used in order to decompress previously saved dump.  nfstrace will 
read  stdin (note  the  -I  – option)  and  perform  offline  analysis  using  Operation 
Breakdown analyzer.

# Dump captured procedures to dump.pcap file.
# Compress output using bzip2 when capturing is over.
nfstrace –-mode=dump                     \
         --filtration="ip and port 2049" \
         -O dump.pcap                    \
         -C "bzip2 -f -9"

# Extract dump.pcap from dump.pcap.bz2 to stdin.
# Read stdin and analyze data with libbreakdown.so module.
bzcat dump.pcap.bz2 | nfstrace –-mode=stat               \
                               -I -                      \
                               --analysis=libbreakdown.so

2.5.6 Online dumping with file limit, compression and offline 
analysis

This example is similar to the previous one except one thing: output dump file can be very 
huge and cause problems in some situations, so nfstrace provides the ability to split it 
into parts.

At first  nfstrace will  be invoked in online dumping mode. Everything is similar to the 
previous example except -D (--dump-size) option: it specifies the size limit in MBytes, so 
dump file will be split according to this value.

At  the  second  run  nfstrace will  perform  offline  analysis  of  captured  packets  using 
Operation Breakdown analyzer.

Please note that only the first dump file has the pcap header.

# Dump captured procedures to the multiple files and compress them.
nfstrace –-mode=dump                     \
         --filtration="ip and port 2049" \
         -O dump.pcap                    \
         -D 1                            \
         -C "bzip2 -f -9"

# get list of parts in the right order:
#    dump.pcap.bz2
#    dump.pcap-1.bz2
parts=$(ls dump.pcap*.bz2 | sort -n -t - -k 2)

9



# Extract main dump.pcap and parts from dump.pcap.bz2 to stdin.
# Read stdin and analyze data with libbreakdown.so module.
bzcat “$parts” | nfstrace --mode=stat                 \
                          -I -                        \
                          --analysis=libbreakdown.so

2.5.7 Visualization

This example demonstrates the ability to plot graphical representation of data collected by 
Operation Breakdown analyzer.

nst.sh is a shell script that collects data generated by analyzers and passes it to gnuplot 
script specified with -a option.

breakdown.plt is  a  gnuplot  script  that understands output  data format of  Operation 
Breakdown analyzer and generates .png files with plots.

Note that gnuplot must be installed.

# Extract dump.pcap from dump.pcap.bz2 to stdin.
# Read stdin and analyze data with libbreakdown.so module.
bzcat trace.pcap.bz2 | nfstrace -m stat -I - -a libbreakdown.so

# Generate plot according to *.dat files generated by
# libbreakdown.so analyzer.
nst.sh -a breakdown.plt -d . -p 'breakdown*.dat' -v

10



3 Analyzers
All pluggable modules are implemented as external shared libraries.

3.1 Operation Breakdown Analyzer (libbreakdown.so)

Operation Breakdown (OB) analyzer calculates average frequency of  NFS procedures and 
computes standard deviation of  latency using one of  two algorithms (two-pass or one-
pass).

Two-pass algorithm returns correct standard deviation but requires a lot of memory during 
computations.  One-pass  algorithm  is  memory-efficient  but  it  accumulates  computation 
error in case of a large number of small latencies. It is possible to choose one of these 
algorithms by passing according parameter while attaching OB analyzer to nfstrace.

$ nfstrace -a libbreakdown.so -h
nfstrace 0.3.0 (Release)
built on Linux-3.16.1-1-generic
by C++ compiler GNU 4.9.1
Usage: ./nfstrace [OPTIONS]...
...
Usage of libbreakdown.so:
ACC - for accurate evaluation(default), MEM - for memory efficient evaluation. Options 
cannot be combined

So, say, in order to choose two-pass algorithm you have to pass ACC to OB analyzer:

nfstrace -m stat -a libreakdown.so#ACC

And the result of execution will look something like this:

Log folder: /tmp/nfstrace
Loading module: 'libbreakdown.so' with args: [ACC]
Read packets from: -
  datalink: EN10MB (Ethernet)
  version: 2.4
Note:  It's  potentially  unsafe  to  run  this  program  as  root  without  dropping  root 
privileges.
Note: Use -Z=username option for dropping root privileges when you run this program as 
user with root privileges.
Processing packets. Press CTRL-C to quit and view results.
Detect session 10.6.137.47:903 --> 10.6.137.113:2049 [TCP]
###  Breakdown analyzer  ###
NFSv3 total procedures: 0. Per procedure:
NULL            0      0%
GETATTR         0      0%
SETATTR         0      0%
...complete output has been omitted...

NFSv4 total procedures: 1607. Per procedure:
NULL                      0   0.00%
COMPOUND               1607 100.00%
NFS4 total operations: 4819. Per operation:
ILLEGAL                   0   0.00%
ACCESS                    1   0.02%

11



CLOSE                     1   0.02%
...complete output has been omitted...

Per connection info:
Session: 10.6.137.47:903 --> 10.6.137.113:2049 [TCP]
Total procedures: 1607. Per procedure:
NULL                 Count:    0 (  0.00%) Min: 0.000 Max: 0.000 Avg: 0.000 StDev: 
0.00000000
...complete output has been omitted...
Filtration is done

OB analyzer produces .dat file in the current directory for each detected NFS session:

$ ls -a *.dat
breakdown_10.6.137.47:903 --> 10.6.137.113:2049 [TCP].dat

As  described  in  [  2.  5  .7  ],  produced  .dat files  can  be  visualized  using  nst.sh and 
breakdown_nfsv3.plt or breakdown_nfsv4.plt (according to NFS version).

nst.sh -a breakdown_nfsv4.plt -d . -p 'breakdown_10.6.137.47:903*.dat'

Figure 3.1 – Session visualization

12



4 Implementation details
This section may be interested for the developers who want to contribute or implement 
new pluggable analysis module.

4.1 Payload filtration

Each NFSv3 procedure consists of two RPC messages:

• call – request from client to server;

• reply – reply from server with result of requested procedure.

Both RPC messages may contain data useful for analysis. Both RPC messages may contain 
thousands of payload bytes useless for analysis.  nfstrace captures headers of calls and 
replies and then matches pairs of them to complete NFS procedures.

The --snaplen option sets up the amount of bytes of incoming packet for uprising from 
the kernel to user-space. In case of TCP transport layer this option is useless because TCP 
connection is a bidirectional stream of data (instead of UDP that is form of interchange up 
to 64k datagrams). In case of NFS over TCP nfstrace captures whole packets and copies 
them to user-space from the kernel for DPI and performing NFS statistical analysis.

Finally,  nfstrace filtrates whole  NFS traffic  passed from the kernel to user-space and 
detects RPC/NFS message headers (up to 4 Kbytes) within gigabytes of network traffic.

Detected  headers  are  copied  into  internal  buffers  (or  dumped  into  a  .pcap file)  for 
statistical analysis.

The key principle of the filtration here is discard payload ASAP.

Filtration module works in a separate thread and captures packets from network interface 
using  libpcap.  It  matches  packets  to  a  related  session  (TCP  or  UDP)  and  performs 
reassembling of TCP flow from a TCP segment of a packet. After that the part of a packet 
will  be passed to  RPCFiltrator. In case of NFSv4 the whole packet will  be passed to 
RPCFiltrator because it consists of several NFSv4 operations.

There are two  RPCFiltrator in one TCP session. Both of them know the state of the 
current  RPC message in  related TCP flow.  They can detect  RPC messages and perform 
actions on a packet: discard it or collect for analysis.

The size of the kernel capture buffer can be set with -b option (in MBytes). Note that this 
option is very crucial for capturing performance.

wsize and  rsize of  an  NFS connection  are  important  for  filtration  and performance 
analysis too.

13



4.2 Pluggable analysis modules

nfstrace provides C++ api for implementing pluggable analysis modules.  Header files 
provide  definitions  of  IAnalyzer interface,  NFS  data  structures  and  functions.  The 
IAnalyzer interface is a set of NFS handlers that will be called by Analysis module for 
each  NFS  procedure.  All  constants  and  definitions  of  types  will  be  included  with 
<nfstrace/api/plugin_api.h> header.

A pluggable analysis module must be a dynamically linked shared object and must export 
the following C functions:

const char* usage (); // return description of expected opts for create(opts)
IAnalyzer*  create (const char* opts); // create and return an instance of an Analyzer
void        destroy (IAnalyzer* instance); // destroy created instance of an Analyzer

After the declaration of all these function there must be the following macro:

NST_PLUGIN_ENTRY_POINTS (&usage, &create, &destroy)

usage() function  must  return  a  C-string  with  module  description  and  required 
parameters for creation of an instance of analyzer, this string will be shown in the output 
of --help option.

IAnalyzer* create(const char* opts) must create and return an instance of the 
analyzer according to passed options.

void  destroy(IAnalyzer*  instance) must  destroy  previously  created  analyzer 
instance and perform required cleanups (e.g. close connection to a database etc.).

All existing analyzers are implemented as pluggable analysis modules and can be attached 
to nfstrace with -a option.

4.3 General schema

The general schema of nfstrace is presented in the figure 4.1.

In this schema you can see how data flows in different modes:

• on-line analysis –  green line ;

• on-line dumping –  yellow line ;

• off-line dumping –  blue line ;

• off-line analysis –  orange line .

See [2.2] for more information about each mode.

14



Figure 4.1 – General schema



5 Glossary
BPF

Berkeley Packet Filter........................................................................................................4p., 7

DPI

Deep Packet Inspection, nfstrace performs DPI of raw network traffic........................13

gnuplot

CLI tool that can generate two- and three-dimensional plots of data................................10

LSF

Linux Socket Filtering, is derived from the BPF......................................................................4

NFS

Network File System Protocol.............................................................................4, 6pp., 11pp.

NIC

Network Interface Card............................................................................................................4

Payload

User’s data transferred by NFS protocol. It is useless in analysis.......................................13

POSIX

Portable Operating System Interface for Unix.......................................................................4

rsize

option of NFS client connection to a NFS server..................................................................13

Wireshark

Enterprise quality tool-set for network traffic analysis..........................................................7

wsize

option of NFS client connection to a NFS server..................................................................13

16


	1 Introduction
	1.1 Portability

	2 Usage
	2.1 Options
	2.2 Running modes
	2.3 Packets filtration
	2.4 Dump file format
	2.5 Usage examples
	2.5.1 Available options
	2.5.2 Online tracing
	2.5.3 Online analysis
	2.5.4 Online dumping and offline analysis
	2.5.5 Online dumping, compression and offline analysis
	2.5.6 Online dumping with file limit, compression and offline analysis
	2.5.7 Visualization


	3 Analyzers
	3.1 Operation Breakdown Analyzer (libbreakdown.so)

	4 Implementation details
	4.1 Payload filtration
	4.2 Pluggable analysis modules
	4.3 General schema

	5 Glossary

