
S3QL Documentation
Release 1.9

Nikolaus Rath

January 21, 2012

CONTENTS

1 About S3QL 1
1.1 Features . 1
1.2 Development Status . 2

2 Installation 3
2.1 Dependencies . 3
2.2 Installing S3QL . 4

3 General Information 5
3.1 Terminology . 5
3.2 Storing Authentication Information . 5
3.3 On Backend Reliability . 6

4 Storage Backends 9
4.1 Google Storage . 9
4.2 Amazon S3 . 9
4.3 OpenStack/Swift . 10
4.4 RackSpace CloudFiles . 11
4.5 S3 compatible . 11
4.6 Local . 11
4.7 SSH/SFTP . 12

5 File System Creation 13

6 Managing Buckets 15
6.1 Changing the Passphrase . 15
6.2 Upgrading the file system . 15
6.3 Deleting a file system . 16
6.4 Restoring Metadata Backups . 16

7 Mounting 17
7.1 Compression Algorithms . 18
7.2 Notes about Caching . 18
7.3 Automatic Mounting . 19

8 Advanced S3QL Features 21
8.1 Snapshotting and Copy-on-Write . 21
8.2 Getting Statistics . 22
8.3 Immutable Trees . 22
8.4 Fast Recursive Removal . 23

i

8.5 Runtime Configuration . 23

9 Unmounting 25

10 Checking for Errors 27

11 Contributed Programs 29
11.1 benchmark.py . 29
11.2 s3_copy.py . 29
11.3 pcp.py . 29
11.4 s3_backup.sh . 29
11.5 expire_backups.py . 30
11.6 s3ql_upstart.conf . 31

12 Tips & Tricks 33
12.1 SSH Backend . 33
12.2 Permanently mounted backup file system . 33
12.3 Improving copy performance . 33

13 Known Issues 35

14 Manpages 37
14.1 The mkfs.s3ql command . 37
14.2 The s3qladm command . 38
14.3 The mount.s3ql command . 39
14.4 The s3qlstat command . 41
14.5 The s3qlctrl command . 41
14.6 The s3qlcp command . 42
14.7 The s3qlrm command . 44
14.8 The s3qllock command . 44
14.9 The umount.s3ql command . 46
14.10 The fsck.s3ql command . 46
14.11 The pcp command . 47
14.12 The expire_backups command . 48

15 Further Resources / Getting Help 51

ii

CHAPTER

ONE

ABOUT S3QL

S3QL is a file system that stores all its data online using storage services like Google Storage, Amazon S3 or Open-
Stack. S3QL effectively provides a hard disk of dynamic, infinite capacity that can be accessed from any computer
with internet access.

S3QL is a standard conforming, full featured UNIX file system that is conceptually indistinguishable from any local
file system. Furthermore, S3QL has additional features like compression, encryption, data de-duplication, immutable
trees and snapshotting which make it especially suitable for online backup and archival.

S3QL is designed to favor simplicity and elegance over performance and feature-creep. Care has been taken to make
the source code as readable and serviceable as possible. Solid error detection and error handling have been included
from the very first line, and S3QL comes with extensive automated test cases for all its components.

1.1 Features

• Transparency. Conceptually, S3QL is indistinguishable from a local file system. For example, it supports
hardlinks, symlinks, ACLs and standard unix permissions, extended attributes and file sizes up to 2 TB.

• Dynamic Size. The size of an S3QL file system grows and shrinks dynamically as required.

• Compression. Before storage, all data may compressed with the LZMA, bzip2 or deflate (gzip) algorithm.

• Encryption. After compression (but before upload), all data can AES encrypted with a 256 bit key. An addi-
tional SHA256 HMAC checksum is used to protect the data against manipulation.

• Data De-duplication. If several files have identical contents, the redundant data will be stored only once. This
works across all files stored in the file system, and also if only some parts of the files are identical while other
parts differ.

• Immutable Trees. Directory trees can be made immutable, so that their contents can no longer be changed in
any way whatsoever. This can be used to ensure that backups can not be modified after they have been made.

• Copy-on-Write/Snapshotting. S3QL can replicate entire directory trees without using any additional storage
space. Only if one of the copies is modified, the part of the data that has been modified will take up additional
storage space. This can be used to create intelligent snapshots that preserve the state of a directory at different
points in time using a minimum amount of space.

• High Performance independent of network latency. All operations that do not write or read file contents
(like creating directories or moving, renaming, and changing permissions of files and directories) are very fast
because they are carried out without any network transactions.

S3QL achieves this by saving the entire file and directory structure in a database. This database is locally cached
and the remote copy updated asynchronously.

1

http://code.google.com/apis/storage/
http://aws.amazon.com/s3AmazonS3
http://openstack.org/projects/storage/
http://openstack.org/projects/storage/

S3QL Documentation, Release 1.9

• Support for low bandwidth connections. S3QL splits file contents into smaller blocks and caches blocks
locally. This minimizes both the number of network transactions required for reading and writing data, and the
amount of data that has to be transferred when only parts of a file are read or written.

1.2 Development Status

After two years of beta-testing by about 93 users did not reveal any data-critical bugs, S3QL was declared stable with
the release of version 1.0 on May 13th, 2011. Note that this does not mean that S3QL is bug-free. S3QL still has
several known, and probably many more unknown bugs. However, there is a high probability that these bugs will,
although being inconvenient, not endanger any stored data.

Please report any problems on the mailing list or the issue tracker.

2 Chapter 1. About S3QL

http://groups.google.com/group/s3ql
http://code.google.com/p/s3ql/issues/list

CHAPTER

TWO

INSTALLATION

S3QL depends on several other programs and libraries that have to be installed first. The best method to satisfy these
dependencies depends on your distribution. In some cases S3QL and all its dependencies can be installed with as little
as three commands, while in other cases more work may be required.

The S3QL Wiki contains installation instructions for quite a few different Linux distributions. You should only use the
generic instructions in this manual if your distribution is not included in the distribution-specific installation instruc-
tions on the wiki.

2.1 Dependencies

The following is a list of the programs and libraries required for running S3QL. Generally, you should first check if
your distribution already provides a suitable packages and only install from source if that is not the case.

• Kernel: Linux 2.6.9 or newer or FreeBSD with FUSE4BSD. Starting with kernel 2.6.26 you will get significantly
better write performance, so under Linux you should actually use 2.6.26 or newer whenever possible.

• Python 2.7 (but not Python 3.x). Make sure to also install the development headers.

• The PyCrypto++ Python Module. To check if this module is installed, try to execute python -c ’import
pycryptopp’.

• SQLite version 3.7.0 or newer. SQLite has to be installed as a shared library with development headers.

• The APSW Python Module. To check which (if any) version of APWS is installed, run the command

python -c ’import apsw; print apsw.apswversion()’

The printed version number should be at least 3.7.0. Note that APSW must be linked dynamically against
SQLite, so you can not use the Ubuntu PPA at https://launchpad.net/~ubuntu-rogerbinns/+archive/apsw (these
packages are statically linked).

• The PyLibLZMA Python module. To check if this module is installed, execute python -c ’import
lzma; print lzma.__version__’. This should print a version number. You need at least version
0.5.3.

• The Python LLFUSE module. To check if this module is installed, execute python -c ’import llfuse;
print llfuse.__version__’. This should print a version number. You need at least version 0.37.

Note that early S3QL versions shipped with a built-in version of this module. If you are upgrading from such a
version, make sure to completely remove the old S3QL version first.

3

http://code.google.com/p/s3ql/w/list
http://code.google.com/p/s3ql/w/list?q=label:Installation
http://code.google.com/p/s3ql/w/list?q=label:Installation
http://www.freshports.org/sysutils/fusefs-kmod/
http://www.python.org/
http://pypi.python.org/pypi/pycryptopp
http://www.sqlite.org/
http://code.google.com/p/apsw/
https://launchpad.net/~ubuntu-rogerbinns/+archive/apsw
http://pypi.python.org/pypi/pyliblzma
http://code.google.com/p/python-llfuse/

S3QL Documentation, Release 1.9

2.2 Installing S3QL

To install S3QL itself, proceed as follows:

1. Download S3QL from http://code.google.com/p/s3ql/downloads/list

2. Unpack it into a folder of your choice

3. Run python setup.py build to build S3QL.

4. Run python setup.py test to run a self-test. If this fails, ask for help on the mailing list or report a bug
in the issue tracker.

Now you have three options:

• You can run the S3QL commands from the bin/ directory.

• You can install S3QL system-wide for all users. To do that, you have to run sudo python setup.py
install.

• You can install S3QL into ~/.local by executing python setup.py install --user. In this case
you should make sure that ~/.local/bin is in your $PATH environment variable.

4 Chapter 2. Installation

http://code.google.com/p/s3ql/downloads/list
http://groups.google.com/group/s3ql
http://code.google.com/p/s3ql/issues/list

CHAPTER

THREE

GENERAL INFORMATION

3.1 Terminology

S3QL can store data at different service providers and using different protocols. The term backend refers to both
the part of S3QL that implements communication with a specific storage service and the storage service itself. Most
backends can hold more than one S3QL file system and thus require some additional information that specifies the file
system location within the backend. This location is called a bucket (for historical reasons).

Many S3QL commands expect a storage url as a parameter. A storage url specifies both the backend and the bucket
and thus uniquely identifies an S3QL file system. The form of the storage url depends on the backend and is described
together with the Storage Backends.

3.2 Storing Authentication Information

Normally, S3QL reads username and password for the backend as well as an encryption passphrase for the bucket
from the terminal. Most commands also accept an --authfile parameter that can be used to read this information
from a file instead.

The authentication file consists of sections, led by a [section] header and followed by name: value entries.
The section headers themselves are not used by S3QL but have to be unique within the file.

In each section, the following entries can be defined:

storage-url Specifies the storage url to which this section applies. If a storage url starts with the value of
this entry, the section is considered applicable.

backend-login Specifies the username to use for authentication with the backend.

backend-password Specifies the password to use for authentication with the backend.

bucket-passphrase Specifies the passphrase to use to decrypt the bucket (if it is encrypted).

When reading the authentication file, S3QL considers every applicable section in order and uses the last value that it
found for each entry. For example, consider the following authentication file:

[s3]
storage-url: s3://
backend-login: joe
backend-password: notquitesecret

[bucket1]
storage-url: s3://joes-first-bucket
bucket-passphrase: neitheristhis

5

S3QL Documentation, Release 1.9

[bucket2]
storage-url: s3://joes-second-bucket
bucket-passphrase: swordfish

[bucket3]
storage-url: s3://joes-second-bucket/with-prefix
backend-login: bill
backend-password: bi23ll
bucket-passphrase: ll23bi

With this authentication file, S3QL would try to log in as “joe” whenever the s3 backend is used, except when accessing
a storage url that begins with “s3://joes-second-bucket/with-prefix”. In that case, the last section becomes active and
S3QL would use the “bill” credentials. Furthermore, bucket encryption passphrases will be used for storage urls that
start with “s3://joes-first-bucket” or “s3://joes-second-bucket”.

The authentication file is parsed by the Python ConfigParser module.

3.3 On Backend Reliability

S3QL has been designed for use with a storage backend where data loss is so infrequent that it can be completely
neglected (e.g. the Amazon S3 backend). If you decide to use a less reliable backend, you should keep the following
warning in mind and read this section carefully.

Warning: S3QL is not able to compensate for any failures of the backend. In particular, it is not able reconstruct
any data that has been lost or corrupted by the backend. The persistence and durability of data stored in an S3QL
file system is limited and determined by the backend alone.

On the plus side, if a backend looses or corrupts some of the stored data, S3QL will detect the problem. Missing data
will be detected when running fsck.s3ql or when attempting to access the data in the mounted file system. In the
later case you will get an IO Error, and the S3QL mount point will become inaccessible.

fsck.s3ql will report all the affected files and move them into the /lost+found directory of the file system.

You should be aware that, because of S3QL’s data de-duplication feature, the consequences of a data loss in the
backend can be significantly more severe than you may expect. More concretely, a data loss in the backend at time x
may cause data that is written after time x to be lost as well. What may happen is this:

1. You store an important file in the S3QL file system.

2. The backend looses the data blocks of this file. As long as you do not access the file or run fsck.s3ql, S3QL
is not aware that the data has been lost by the backend.

3. You save an additional copy of the important file in a different location on the same S3QL file system.

4. S3QL detects that the contents of the new file are identical to the data blocks that have been stored earlier. Since
at this point S3QL is not aware that these blocks have been lost by the backend, it does not save another copy of
the file contents in the backend but relies on the (presumably) existing blocks instead.

5. Therefore, even though you saved another copy, you still do not have a backup of the important file (since both
copies refer to the same data blocks that have been lost by the backend).

As one can see, this effect becomes the less important the more often one runs fsck.s3ql, since fsck.s3ql will
make S3QL aware of any blocks that the backend may have lost. Figuratively, this establishes a “checkpoint”: data
loss in the backend that occurred before running fsck.s3ql can not affect any file system operations performed
after running fsck.s3ql.

6 Chapter 3. General Information

http://docs.python.org/library/configparser.html

S3QL Documentation, Release 1.9

Nevertheless, the recommended way to use S3QL is in combination with a sufficiently reliable storage backend. In
that case none of the above will ever be a concern.

3.3. On Backend Reliability 7

S3QL Documentation, Release 1.9

8 Chapter 3. General Information

CHAPTER

FOUR

STORAGE BACKENDS

All storage backends respect the http_proxy and https_proxy environment variables.

4.1 Google Storage

Google Storage is an online storage service offered by Google. It is the most feature-rich service supported by S3QL
and S3QL offers the best performance when used with the Google Storage backend.

To use the Google Storage backend, you need to have (or sign up for) a Google account, and then activate Google
Storage for your account. The account is free, you will pay only for the amount of storage and traffic that you actually
use. Once you have created the account, make sure to activate legacy access.

To create a Google Storage bucket, you can use e.g. the Google Storage Manager. The storage URL for accessing the
bucket in S3QL is then

gs://<bucketname>/<prefix>

Here bucketname is the name of the bucket, and prefix can be an arbitrary prefix that will be prepended to all object
names used by S3QL. This allows you to store several S3QL file systems in the same Google Storage bucket.

Note that the backend login and password for accessing your Google Storage bucket are not your Google account
name and password, but the Google Storage developer access key and Google Storage developer secret that you can
manage with the Google Storage key management tool.

If you would like S3QL to connect using HTTPS instead of standard HTTP, start the storage url with gss:// instead
of gs://. Note that at this point S3QL does not perform any server certificate validation (see issue 267).

4.2 Amazon S3

Amazon S3 is the online storage service offered by Amazon Web Services (AWS). To use the S3 backend, you first
need to sign up for an AWS account. The account is free, you will pay only for the amount of storage and traffic
that you actually use. After that, you need to create a bucket that will hold the S3QL file system, e.g. using the AWS
Management Console. For best performance, it is recommend to create the bucket in the geographically closest storage
region, but not the US Standard region (see below).

The storage URL for accessing S3 buckets in S3QL has the form

s3://<bucketname>/<prefix>

Here bucketname is the name of the bucket, and prefix can be an arbitrary prefix that will be prepended to all object
names used by S3QL. This allows you to store several S3QL file systems in the same S3 bucket.

9

http://code.google.com/apis/storage/
http://code.google.com/apis/storage/docs/signup.html
http://code.google.com/apis/storage/docs/signup.html
http://code.google.com/apis/storage/docs/reference/v1/apiversion1.html#enabling
https://sandbox.google.com/storage/
https://code.google.com/apis/console/#:storage:legacy
http://code.google.com/p/s3ql/issues/detail?id=267
http://aws.amazon.com/s3
http://aws.amazon.com/
https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/s3/home

S3QL Documentation, Release 1.9

Note that the backend login and password for accessing S3 are not the user id and password that you use to log into the
Amazon Webpage, but the AWS access key id and AWS secret access key shown under My Account/Access Identifiers.

If you would like S3QL to connect using HTTPS instead of standard HTTP, start the storage url with s3s:// instead
of s3://. Note that, as of May 2011, Amazon S3 is faster when accessed using a standard HTTP connection, and
that S3QL does not perform any server certificate validation (see issue 267).

4.2.1 Reduced Redundancy Storage (RRS)

S3QL does not allow the use of reduced redundancy storage. The reason for that is a combination of three factors:

• RRS has a relatively low reliability, on average you loose one out of every ten-thousand objects a year. So you
can expect to occasionally loose some data.

• When fsck.s3ql asks S3 for a list of the stored objects, this list includes even those objects that have been
lost. Therefore fsck.s3ql can not detect lost objects and lost data will only become apparent when you try
to actually read from a file whose data has been lost. This is a (very unfortunate) peculiarity of Amazon S3.

• Due to the data de-duplication feature of S3QL, unnoticed lost objects may cause subsequent data loss later in
time (see On Backend Reliability for details).

4.2.2 Potential issues when using the US Standard storage region

In the US Standard storage region, Amazon S3 does not guarantee read after create consistency. This means that
after a new object has been stored, requests to read this object may still fail for a little while. While the file system
is mounted, S3QL is able to automatically handle all issues related to this so-called eventual consistency. However,
problems may arise during the mount process and when the file system is checked:

Suppose that you mount the file system, store some new data, delete some old data and unmount it again. Now there is
no guarantee that these changes will be visible immediately. At least in theory it is therefore possible that if you mount
the file system again, S3QL does not see any of the changes that you have done and presents you an “old version” of
the file system without them. Even worse, if you notice the problem and unmount the file system, S3QL will upload
the old status (which S3QL necessarily has to consider as current) and thereby permanently override the newer version
(even though this change may not become immediately visible either).

The same problem applies when checking the file system. If S3 provides S3QL with only partially updated data, S3QL
has no way to find out if this a real consistency problem that needs to be fixed or if it is only a temporary problem that
will resolve itself automatically (because there are still changes that have not become visible yet).

The likelihood of this to happen is rather low. In practice, most objects are ready for retrieval just a few seconds after
they have been stored, so to trigger this problem one would have to unmount and remount the file system in a very
short time window. However, since S3 does not place any upper limit on the length of this window, it is recommended
to not place S3QL buckets in the US Standard storage region. As of May 2011, all other storage regions provide
stronger consistency guarantees that completely eliminate any of the described problems.

4.3 OpenStack/Swift

OpenStack is an open-source cloud server application suite. Swift is the cloud storage module of OpenStack.
Swift/OpenStack storage is offered by many different companies.

The storage URL for the OpenStack backend has the form

swift://<hostname>[:<port>]/<container>[/<prefix>]

10 Chapter 4. Storage Backends

https://aws-portal.amazon.com/gp/aws/developer/account/index.html?ie=UTF8&action=access-key
http://code.google.com/p/s3ql/issues/detail?id=267
http://aws.amazon.com/s3/#protecting
http://www.openstack.org/
http://openstack.org/projects/storage/

S3QL Documentation, Release 1.9

Note that the storage container must already exist. Most OpenStack providers offer a web frontend that you can use to
create storage containers. prefix can be an arbitrary prefix that will be prepended to all object names used by S3QL.
This allows you to store several S3QL file systems in the same container.

The OpenStack backend always uses HTTPS connections. Note, however, that at this point S3QL does not verify the
server certificate (cf. issue 267).

4.4 RackSpace CloudFiles

RackSpace CloudFiles uses OpenStack internally, so you can use the OpenStack/Swift backend (see above). The
hostname for CloudFiles containers is auth.api.rackspacecloud.com. Use your normal RackSpace user
name for the backend login, and your RackSpace API key as the backend passphrase. You can create a storage
container for S3QL using the Control Panel (go to Cloud Files under Hosting).

You should note that opinions about RackSpace differ widely among S3QL users and developers. On the one hand,
people praise RackSpace for their backing of the (open source) OpenStack project. On the other hand, their heavily
advertised “fanatical support” is in practice often not only less than helpful, but their support agents also seem to
be downright incompetent. However, there are reports that the support quality increases dramatically once you are a
customer and use the “Live Chat” link when you are logged into the control panel.

4.5 S3 compatible

S3QL is also able to access other, S3 compatible storage services for which no specific backend exists. Note that when
accessing such services, only the lowest common denominator of available features can be used, so it is generally
recommended to use a service specific backend instead.

The storage URL for accessing an arbitrary S3 compatible storage service is

s3c://<hostname>:<port>/<bucketname>/<prefix>

or

s3cs://<hostname>:<port>/<bucketname>/<prefix>

to use HTTPS connections. Note, however, that at this point S3QL does not verify the server certificate (cf. issue 267).

4.6 Local

S3QL is also able to store its data on the local file system. This can be used to backup data on external media, or to
access external services that S3QL can not talk to directly (e.g., it is possible to store data over SSH by first mounting
the remote system using sshfs, then using the local backend to store the data in the sshfs mountpoint).

The storage URL for local storage is

local://<path>

Note that you have to write three consecutive slashes to specify an absolute path, e.g. local:///var/archive.
Also, relative paths will automatically be converted to absolute paths before the authentication file is read, i.e. if you are
in the /home/john directory and try to mount local://bucket, the corresponding section in the authentication
file must match the storage url local:///home/john/bucket.

4.4. RackSpace CloudFiles 11

http://code.google.com/p/s3ql/issues/detail?id=267
http://www.rackspace.com/
https://manage.rackspacecloud.com/
http://code.google.com/p/s3ql/issues/detail?id=243#c5
http://code.google.com/p/s3ql/issues/detail?id=243#c11
http://code.google.com/p/s3ql/issues/detail?id=267
http://fuse.sourceforge.net/sshfs.html

S3QL Documentation, Release 1.9

4.7 SSH/SFTP

Previous versions of S3QL included an SSH/SFTP backend. With newer S3QL versions, it is recommended to instead
combine the local backend with sshfs (cf. SSH Backend).

12 Chapter 4. Storage Backends

http://fuse.sourceforge.net/sshfs.html

CHAPTER

FIVE

FILE SYSTEM CREATION

A S3QL file system is created with the mkfs.s3ql command. It has the following syntax:

mkfs.s3ql [options] <storage url>

This command accepts the following options:

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug <module> activate debugging output from <module>. Use all to get debug
messages from all modules. This option can be specified multiple
times.

--quiet be really quiet

--version just print program version and exit

-L <name> Filesystem label

--max-obj-size <size> Maximum size of storage objects in KB. Files bigger than this will
be spread over multiple objects in the storage backend. Default:
10240 KB.

--plain Create unencrypted file system.

--force Overwrite any existing data.

Unless you have specified the --plain option, mkfs.s3ql will ask you to enter an encryption password. This
password will not be read from an authentication file specified with the --authfile option to prevent accidental
creation of an encrypted bucket.

13

S3QL Documentation, Release 1.9

14 Chapter 5. File System Creation

CHAPTER

SIX

MANAGING BUCKETS

The s3qladm command performs various operations on S3QL buckets. The file system contained in the bucket must
not be mounted when using s3qladm or things will go wrong badly.

The syntax is

s3qladm [options] <action> <storage-url>

where action may be either of passphrase, upgrade, clear or download-metadata.

The s3qladm accepts the following general options, no matter what specific action is being invoked:

--debug <module> activate debugging output from <module>. Use all to get debug
messages from all modules. This option can be specified multiple
times.

--quiet be really quiet

--log <target> Write logging info into this file. File will be rotated when it reaches
1 MB, and at most 5 old log files will be kept. Specify none to
disable logging. Default: none

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--version just print program version and exit

Hint: run s3qladm <action> --help to get help on the additional arguments that the different actions take.

6.1 Changing the Passphrase

To change the passphrase a bucket, use the s3qladm command:

s3qladm passphrase <storage url>

The passphrase can only be changed when the bucket is not mounted.

6.2 Upgrading the file system

If you have installed a new version of S3QL, it may sometimes be necessary to upgrade the file system metadata as
well. Note that in this case the file system can no longer be accessed with older versions of S3QL after the upgrade.

15

S3QL Documentation, Release 1.9

During the upgrade you have to make sure that the command is not interrupted, and that no one else tries to mount,
check or upgrade the file system at the same time.

To upgrade a file system from the previous to the current revision, execute

s3qladm upgrade <storage url>

6.3 Deleting a file system

A file system can be deleted with:

s3qladm clear <storage url>

This physically deletes all the data and file system structures.

6.4 Restoring Metadata Backups

If the most-recent copy of the file system metadata has been damaged irreparably, it is possible to restore one of the
automatically created backup copies.

The command

s3qladm download-metadata <storage url>

will give you a list of the available metadata backups and allow you to download them. This will create two new files
in the current directory, ending in .db and .params. To actually use the downloaded backup, you need to move
these files into the ~/.s3ql/ directory and run fsck.s3ql.

Warning: You should probably not use this functionality without having asked for help on the mailing list first
(see Further Resources / Getting Help).

16 Chapter 6. Managing Buckets

CHAPTER

SEVEN

MOUNTING

A S3QL file system is mounted with the mount.s3ql command. It has the following syntax:

mount.s3ql [options] <storage url> <mountpoint>

Note: S3QL is not a network file system like NFS or CIFS. It can only be mounted on one computer at a time.

This command accepts the following options:

--log <target> Write logging info into this file. File will be rotated when it reaches
1 MB, and at most 5 old log files will be kept. Specify none to
disable logging. Default: ~/.s3ql/mount.log

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug <module> activate debugging output from <module>. Use all to get debug
messages from all modules. This option can be specified multiple
times.

--quiet be really quiet

--version just print program version and exit

--cachesize <size> Cache size in kb (default: 102400 (100 MB)). Should be at least 10
times the maximum object size of the filesystem, otherwise an object
may be retrieved and written several times during a single write() or
read() operation.

--max-cache-entries <num> Maximum number of entries in cache (default: 768). Each
cache entry requires one file descriptor, so if you increase this num-
ber you have to make sure that your process file descriptor limit (as
set with ulimit -n) is high enough (at least the number of cache
entries + 100).

--min-obj-size <size> Minimum size of storage objects in KB. Files smaller than this may
be combined into groups that are stored as single objects in the stor-
age backend. Default: 512 KB.

--allow-other Normally, only the user who called mount.s3ql can access the
mount point. This user then also has full access to it, independent of

17

http://en.wikipedia.org/wiki/Network_File_System_%28protocol%29
http://en.wikipedia.org/wiki/CIFS

S3QL Documentation, Release 1.9

individual file permissions. If the --allow-other option is spec-
ified, other users can access the mount point as well and individual
file permissions are taken into account for all users.

--allow-root Like --allow-other, but restrict access to the mounting user and
the root user.

--fg Do not daemonize, stay in foreground

--single Run in single threaded mode. If you don’t understand this, then you
don’t need it.

--upstart Stay in foreground and raise SIGSTOP once mountpoint is up.

--profile Create profiling information. If you don’t understand this, then you
don’t need it.

--compress <name> Compression algorithm to use when storing new data. Allowed val-
ues: lzma, bzip2, zlib, none. (default: lzma)

--metadata-upload-interval <seconds> Interval in seconds between complete metadata
uploads. Set to 0 to disable. Default: 24h.

--threads <no> Number of parallel upload threads to use (default: auto).

--nfs Support export of S3QL file systems over NFS (default: False)

7.1 Compression Algorithms

S3QL supports three compression algorithms, LZMA, Bzip2 and zlib (with LZMA being the default). The compres-
sion algorithm can be specified freely whenever the file system is mounted, since it affects only the compression of
new data blocks.

Roughly speaking, LZMA is slower but achieves better compression ratios than Bzip2, while Bzip2 in turn is slower
but achieves better compression ratios than zlib.

For maximum file system performance, the best algorithm therefore depends on your network connection speed: the
compression algorithm should be fast enough to saturate your network connection.

To find the optimal algorithm and number of parallel compression threads for your system, S3QL ships with a program
called benchmark.py in the contrib directory. You should run this program on a file that has a size that is roughly
equal to the block size of your file system and has similar contents. It will then determine the compression speeds for
the different algorithms and the upload speeds for the specified backend and recommend the best algorithm that is fast
enough to saturate your network connection.

Obviously you should make sure that there is little other system load when you run benchmark.py (i.e., don’t
compile software or encode videos at the same time).

7.2 Notes about Caching

S3QL maintains a local cache of the file system data to speed up access. The cache is block based, so it is possible
that only parts of a file are in the cache.

18 Chapter 7. Mounting

S3QL Documentation, Release 1.9

7.2.1 Maximum Number of Cache Entries

The maximum size of the cache can be configured with the --cachesize option. In addition to that, the maximum
number of objects in the cache is limited by the --max-cache-entries option, so it is possible that the cache
does not grow up to the maximum cache size because the maximum number of cache elements has been reached. The
reason for this limit is that each cache entry requires one open file descriptor, and Linux distributions usually limit the
total number of file descriptors per process to about a thousand.

If you specify a value for --max-cache-entries, you should therefore make sure to also configure your system
to increase the maximum number of open file handles. This can be done temporarily with the umask -n command.
The method to permanently change this limit system-wide depends on your distribution.

7.2.2 Cache Flushing and Expiration

S3QL flushes changed blocks in the cache to the backend whenever a block has not been accessed for at least 10
seconds. Note that when a block is flushed, it still remains in the cache.

Cache expiration (i.e., removal of blocks from the cache) is only done when the maximum cache size is reached. S3QL
always expires the least recently used blocks first.

7.3 Automatic Mounting

If you want to mount and umount an S3QL file system automatically at system startup and shutdown, you should do
so with one dedicated S3QL init script for each S3QL file system.

If your system is using upstart, an appropriate job can be defined as follows (and should be placed in /etc/init/):

1 description "S3QL Backup File System"
2 author "Nikolaus Rath <Nikolaus@rath.org>"
3

4 # This assumes that eth0 provides your internet connection
5 start on (filesystem and net-device-up IFACE=eth0)
6 stop on runlevel [016]
7

8 env BUCKET="s3://my-backup-bla"
9 env MOUNTPOINT="/mnt/backup"

10

11 env USER="myusername"
12 env AUTHFILE="/path/to/authinfo2"
13

14 expect stop
15

16 script
17 # Redirect stdout and stderr into the system log
18 DIR=$(mktemp -d)
19 mkfifo "$DIR/LOG_FIFO"
20 logger -t s3ql -p local0.info < "$DIR/LOG_FIFO" &
21 exec > "$DIR/LOG_FIFO"
22 exec 2>&1
23 rm -rf "$DIR"
24

25 # Check and mount file system
26 su -s /bin/sh -c ’exec "$0" "$@"’ "$USER" -- \
27 fsck.s3ql --batch --authfile "$AUTHFILE" "$BUCKET"
28 exec su -s /bin/sh -c ’exec "$0" "$@"’ "$USER" -- \

7.3. Automatic Mounting 19

S3QL Documentation, Release 1.9

29 mount.s3ql --upstart --authfile "$AUTHFILE" "$BUCKET" "$MOUNTPOINT"
30 end script
31

32 pre-stop script
33 su -s /bin/sh -c ’exec "$0" "$@"’ "$USER" -- umount.s3ql "$MOUNTPOINT"
34 end script

Note: In principle, it is also possible to automatically mount an S3QL file system with an appropriate entry in
/etc/fstab. However, this is not recommended for several reasons:

• file systems mounted in /etc/fstab will be unmounted with the umount command, so your system will not
wait until all data has been uploaded but shutdown (or restart) immediately (this is a FUSE limitation, see issue
159).

• There is no way to tell the system that mounting S3QL requires a Python interpreter to be available, so it may
attempt to run mount.s3ql before it has mounted the volume containing the Python interpreter.

• There is no standard way to tell the system that internet connection has to be up before the S3QL file system can
be mounted.

20 Chapter 7. Mounting

http://code.google.com/p/s3ql/issues/detail?id=159
http://code.google.com/p/s3ql/issues/detail?id=159

CHAPTER

EIGHT

ADVANCED S3QL FEATURES

8.1 Snapshotting and Copy-on-Write

The command s3qlcp can be used to duplicate a directory tree without physically copying the file contents. This is
made possible by the data de-duplication feature of S3QL.

The syntax of s3qlcp is:

s3qlcp [options] <src> <target>

This will replicate the contents of the directory <src> in the directory <target>. <src> has to be an existing
directory and <target> must not exist. Moreover, both directories have to be within the same S3QL file system.

The replication will not take any additional space. Only if one of directories is modified later on, the modified data
will take additional storage space.

s3qlcp can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user. This limitation might be removed in the future (see issue
155).

Note that:

• After the replication, both source and target directory will still be completely ordinary directories. You can
regard <src> as a snapshot of <target> or vice versa. However, the most common usage of s3qlcp is
to regularly duplicate the same source directory, say documents, to different target directories. For a e.g.
monthly replication, the target directories would typically be named something like documents_January
for the replication in January, documents_February for the replication in February etc. In this case it is
clear that the target directories should be regarded as snapshots of the source directory.

• Exactly the same effect could be achieved by an ordinary copy program like cp -a. However, this procedure
would be orders of magnitude slower, because cp would have to read every file completely (so that S3QL had
to fetch all the data over the network from the backend) before writing them into the destination folder.

8.1.1 Snapshotting vs Hardlinking

Snapshot support in S3QL is inspired by the hardlinking feature that is offered by programs like rsync or storeBackup.
These programs can create a hardlink instead of copying a file if an identical file already exists in the backup. However,
using hardlinks has two large disadvantages:

• backups and restores always have to be made with a special program that takes care of the hardlinking. The
backup must not be touched by any other programs (they may make changes that inadvertently affect other
hardlinked files)

21

http://code.google.com/p/s3ql/issues/detail?id=155
http://code.google.com/p/s3ql/issues/detail?id=155
http://www.samba.org/rsync
http://savannah.nongnu.org/projects/storebackup

S3QL Documentation, Release 1.9

• special care needs to be taken to handle files which are already hardlinked (the restore program needs to know
that the hardlink was not just introduced by the backup program to safe space)

S3QL snapshots do not have these problems, and they can be used with any backup program.

8.2 Getting Statistics

You can get more information about a mounted S3QL file system with the s3qlstat command. It has the following
syntax:

s3qlstat [options] <mountpoint>

Probably the most interesting numbers are the total size of your data, the total size after duplication, and the final size
after de-duplication and compression.

s3qlstat can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user. This limitation might be removed in the future (see issue 155).

For a full list of available options, run s3qlstat --help.

8.3 Immutable Trees

The command s3qllock can be used to make a directory tree immutable. Immutable trees can no longer be changed
in any way whatsoever. You can not add new files or directories and you can not change or delete existing files and
directories. The only way to get rid of an immutable tree is to use the s3qlrm command (see below).

For example, to make the directory tree beneath the directory 2010-04-21 immutable, execute

s3qllock 2010-04-21

Immutability is a feature designed for backups. Traditionally, backups have been made on external tape drives. Once
a backup was made, the tape drive was removed and locked somewhere in a shelf. This has the great advantage that
the contents of the backup are now permanently fixed. Nothing (short of physical destruction) can change or delete
files in the backup.

In contrast, when backing up into an online storage system like S3QL, all backups are available every time the file
system is mounted. Nothing prevents a file in an old backup from being changed again later on. In the worst case, this
may make your entire backup system worthless. Imagine that your system gets infected by a nasty virus that simply
deletes all files it can find – if the virus is active while the backup file system is mounted, the virus will destroy all
your old backups as well!

Even if the possibility of a malicious virus or trojan horse is excluded, being able to change a backup after it has been
made is generally not a good idea. A common S3QL use case is to keep the file system mounted at all times and
periodically create backups with rsync -a. This allows every user to recover her files from a backup without having to
call the system administrator. However, this also allows every user to accidentally change or delete files in one of the
old backups.

Making a backup immutable protects you against all these problems. Unless you happen to run into a virus that was
specifically programmed to attack S3QL file systems, backups can be neither deleted nor changed after they have been
made immutable.

22 Chapter 8. Advanced S3QL Features

http://code.google.com/p/s3ql/issues/detail?id=155

S3QL Documentation, Release 1.9

8.4 Fast Recursive Removal

The s3qlrm command can be used to recursively delete files and directories on an S3QL file system. Although
s3qlrm is faster than using e.g. rm -r, the main reason for its existence is that it allows you to delete immutable
trees as well. The syntax is rather simple:

s3qlrm <directory>

Be warned that there is no additional confirmation. The directory will be removed entirely and immediately.

8.5 Runtime Configuration

The s3qlctrl can be used to control a mounted S3QL file system. Its syntax is

s3qlctrl [options] <action> <mountpoint> ...

<mountpoint> must be the location of a mounted S3QL file system. For a list of valid options, run s3qlctrl
--help. <action> may be either of:

flushcache Flush file system cache. The command blocks until the cache has been flushed.

log Change log level.

cachesize Change file system cache size.

upload-meta Trigger a metadata upload.

8.4. Fast Recursive Removal 23

S3QL Documentation, Release 1.9

24 Chapter 8. Advanced S3QL Features

CHAPTER

NINE

UNMOUNTING

To unmount an S3QL file system, use the command:

umount.s3ql [options] <mountpoint>

This will block until all data has been committed to the storage backend.

Only the user who mounted the file system with mount.s3ql is able to unmount it again. If you are root and want to
unmount an S3QL file system mounted by an ordinary user, you have to use the fusermount -u or umount command
instead. Note that these commands do not block until all data has been uploaded, so if you use them instead of
umount.s3ql then you should manually wait for the mount.s3ql process to terminate before shutting down the
system.

The umount.s3ql command accepts the following options:

--debug activate debugging output

--quiet be really quiet

--version just print program version and exit

--lazy, -z Lazy umount. Detaches the file system immediately, even if there are
still open files. The data will be uploaded in the background once all
open files have been closed.

If, for some reason, the umount.sql command does not work, the file system can also be unmounted with
fusermount -u -z. Note that this command will return immediately and the file system may continue to up-
load data in the background for a while longer.

25

S3QL Documentation, Release 1.9

26 Chapter 9. Unmounting

CHAPTER

TEN

CHECKING FOR ERRORS

If, for some reason, the filesystem has not been correctly unmounted, or if you suspect that there might be errors, you
should run the fsck.s3ql utility. It has the following syntax:

fsck.s3ql [options] <storage url>

This command accepts the following options:

--log <target> Write logging info into this file. File will be rotated when it reaches
1 MB, and at most 5 old log files will be kept. Specify none to
disable logging. Default: ~/.s3ql/fsck.log

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug <module> activate debugging output from <module>. Use all to get debug
messages from all modules. This option can be specified multiple
times.

--quiet be really quiet

--version just print program version and exit

--batch If user input is required, exit without prompting.

--force Force checking even if file system is marked clean.

27

S3QL Documentation, Release 1.9

28 Chapter 10. Checking for Errors

CHAPTER

ELEVEN

CONTRIBUTED PROGRAMS

S3QL comes with a few contributed programs that are not part of the core distribution (and are therefore not installed
automatically by default), but which may nevertheless be useful. These programs are in the contrib directory of the
source distribution or in /usr/share/doc/s3ql/contrib if you installed S3QL from a package.

11.1 benchmark.py

This program measures S3QL write performance, uplink bandwidth and compression speed to determine the limiting
factor. It also gives recommendation for compression algorithm and number of upload threads to achieve maximum
performance.

11.2 s3_copy.py

This program physically duplicates Amazon S3 bucket. It can be used to migrate buckets to a different storage region
or storage class (standard or reduced redundancy).

11.3 pcp.py

pcp.py is a wrapper program that starts several rsync processes to copy directory trees in parallel. This is important
because transferring files in parallel significantly enhances performance when copying data from an S3QL file system
(see Improving copy performance for details).

To recursively copy the directory /mnt/home-backup into /home/joe using 8 parallel processes and preserving
permissions, you would execute

pcp.py -a --processes=8 /mnt/home-backup/ /home/joe

11.4 s3_backup.sh

This is an example script that demonstrates how to set up a simple but powerful backup solution using S3QL and
rsync.

The s3_backup.sh script automates the following steps:

1. Mount the file system

29

http://samba.org/rsync

S3QL Documentation, Release 1.9

2. Replicate the previous backup with s3qlcp

3. Update the new copy with the data from the backup source using rsync

4. Make the new backup immutable with s3qllock

5. Delete old backups that are no longer needed

6. Unmount the file system

The backups are stored in directories of the form YYYY-MM-DD_HH:mm:SS and the expire_backups.py command is
used to delete old backups.

11.5 expire_backups.py

expire_backups.py is a program to intelligently remove old backups that are no longer needed.

To define what backups you want to keep for how long, you define a number of age ranges. expire_backups ensures
that you will have at least one backup in each age range at all times. It will keep exactly as many backups as are
required for that and delete any backups that become redundant.

Age ranges are specified by giving a list of range boundaries in terms of backup cycles. Every time you create a new
backup, the existing backups age by one cycle.

Example: when expire_backups is called with the age range definition 1 3 7 14 31, it will guarantee that you
always have the following backups available:

1. A backup that is 0 to 1 cycles old (i.e, the most recent backup)

2. A backup that is 1 to 3 cycles old

3. A backup that is 3 to 7 cycles old

4. A backup that is 7 to 14 cycles old

5. A backup that is 14 to 31 cycles old

Note: If you do backups in fixed intervals, then one cycle will be equivalent to the backup interval. The advantage of
specifying the age ranges in terms of backup cycles rather than days or weeks is that it allows you to gracefully handle
irregular backup intervals. Imagine that for some reason you do not turn on your computer for one month. Now all
your backups are at least a month old, and if you had specified the above backup strategy in terms of absolute ages,
they would all be deleted! Specifying age ranges in terms of backup cycles avoids these sort of problems.

expire_backups usage is simple. It requires backups to have names of the forms
year-month-day_hour:minute:seconds (YYYY-MM-DD_HH:mm:ss) and works on all backups in
the current directory. So for the above backup strategy, the correct invocation would be:

expire_backups.py 1 3 7 14 31

When storing your backups on an S3QL file system, you probably want to specify the --use-s3qlrm option as
well. This tells expire_backups to use the s3qlrm command to delete directories.

expire_backups uses a “state file” to keep track which backups are how many cycles old (since this cannot be inferred
from the dates contained in the directory names). The standard name for this state file is .expire_backups.dat.
If this file gets damaged or deleted, expire_backups no longer knows the ages of the backups and refuses to work.
In this case you can use the --reconstruct-state option to try to reconstruct the state from the backup dates.
However, the accuracy of this reconstruction depends strongly on how rigorous you have been with making backups (it
is only completely correct if the time between subsequent backups has always been exactly the same), so it’s generally
a good idea not to tamper with the state file.

30 Chapter 11. Contributed Programs

S3QL Documentation, Release 1.9

For a full list of available options, run expire_backups.py –help.

11.6 s3ql_upstart.conf

s3ql_upstart.conf is an example upstart job definition file. It defines a job that automatically mounts an S3QL
file system on system start, and properly unmounts it when the system is shut down.

11.6. s3ql_upstart.conf 31

S3QL Documentation, Release 1.9

32 Chapter 11. Contributed Programs

CHAPTER

TWELVE

TIPS & TRICKS

12.1 SSH Backend

By combining S3QL’s local backend with sshfs, it is possible to store an S3QL file system on arbitrary SSH servers:
first mount the remote target directory into the local filesystem,

sshfs user@my.server.com:/mnt/s3ql /mnt/sshfs

and then give the mountpoint to S3QL as a local destination:

mount.s3ql local:///mnt/sshfs/mybucket /mnt/s3ql

12.2 Permanently mounted backup file system

If you use S3QL as a backup file system, it can be useful to mount the file system permanently (rather than just
mounting it for a backup and unmounting it afterwards). Especially if your file system becomes large, this saves you
long mount- and unmount times if you only want to restore a single file.

If you decide to do so, you should make sure to

• Use s3qllock to ensure that backups are immutable after they have been made.

• Call s3qlctrl upload-meta right after a every backup to make sure that the newest metadata is stored safely (if
you do backups often enough, this may also allow you to set the --metadata-upload-interval option
of mount.s3ql to zero).

12.3 Improving copy performance

Note: The following applies only when copying data from an S3QL file system, not when copying data to an S3QL
file system.

If you want to copy a lot of smaller files from an S3QL file system (e.g. for a system restore) you will probably notice
that the performance is rather bad.

The reason for this is intrinsic to the way S3QL works. Whenever you read a file, S3QL first has to retrieve this file
over the network from the storage backend. This takes a minimum amount of time (the network latency), no matter
how big or small the file is. So when you copy lots of small files, 99% of the time is actually spend waiting for network
data.

33

http://fuse.sourceforge.net/sshfs.html

S3QL Documentation, Release 1.9

Theoretically, this problem is easy to solve: you just have to copy several files at the same time. In practice, however,
almost all unix utilities (cp, rsync, tar and friends) insist on copying data one file at a time. This makes a lot of
sense when copying data on the local hard disk, but in case of S3QL this is really unfortunate.

The best workaround that has been found so far is to copy files by starting several rsync processes at once and use
exclusion rules to make sure that they work on different sets of files.

For example, the following script will start 3 rsync instances. The first instance handles all filenames starting with a-f,
the second the filenames from g-l and the third covers the rest. The + */ rule ensures that every instance looks into
all directories.

#!/bin/bash

RSYNC_ARGS="-aHv /mnt/s3ql/ /home/restore/"

rsync -f "+ */" -f "-! [a-f]*" $RSYNC_ARGS &
rsync -f "+ */" -f "-! [g-l]*" $RSYNC_ARGS &
rsync -f "+ */" -f "- [a-l]*" $RSYNC_ARGS &

wait

The optimum number of parallel processes depends on your network connection and the size of the files that you
want to transfer. However, starting about 10 processes seems to be a good compromise that increases performance
dramatically in almost all situations.

S3QL comes with a script named pcp.py in the contrib directory that can be used to transfer files in parallel
without having to write an explicit script first. See the description of pcp.py for details.

34 Chapter 12. Tips & Tricks

CHAPTER

THIRTEEN

KNOWN ISSUES

• S3QL does not verify TLS/SSL server certificates, so a man-in-the-middle attack is principally possible. See
issue 267 for more details.

• S3QL is rather slow when an application tries to write data in unreasonably small chunks. If a 1 MB file is
copied in chunks of 1 KB, this will take more than 10 times as long as when it’s copied with the (recommended)
chunk size of 128 KB.

This is a limitation of the FUSE library (which does not yet support write caching) which will hopefully be
addressed in some future FUSE version.

Most applications, including e.g. GNU cp and rsync, use reasonably large buffers and are therefore not
affected by this problem and perform very efficient on S3QL file systems.

However, if you encounter unexpectedly slow performance with a specific program, this might be due to the
program using very small write buffers. Although this is not really a bug in the program, it might be worth to
ask the program’s authors for help.

• S3QL always updates file and directory access times as if the relatime mount option has been specified: the
access time (“atime”) is only updated if it is currently earlier than either the status change time (“ctime”) or
modification time (“mtime”).

• S3QL directories always have an st_nlink value of 1. This may confuse programs that rely on directories
having st_nlink values of (2 + number of sub directories).

Note that this is not a bug in S3QL. Including sub directories in the st_nlink value is a Unix convention, but
by no means a requirement. If an application blindly relies on this convention being followed, then this is a bug
in the application.

A prominent example are early versions of GNU find, which required the --noleaf option to work correctly
on S3QL file systems. This bug has already been fixed in recent find versions.

• The umount and fusermount -u commands will not block until all data has been uploaded to the backend.
(this is a FUSE limitation that will hopefully be removed in the future, see issue 159). If you use either command
to unmount an S3QL file system, you have to take care to explicitly wait for the mount.s3ql process to
terminate before you shut down or restart the system. Therefore it is generally not a good idea to mount an
S3QL file system in /etc/fstab (you should use a dedicated init script instead).

• S3QL relies on the backends not to run out of space. This is a given for big storage providers like Amazon S3,
but you may stumble upon this if you store buckets e.g. on smaller servers or servies.

If there is no space left in the backend, attempts to write more data into the S3QL file system will fail and the
file system will be in an inconsistent state and require a file system check (and you should make sure to make
space available in the backend before running the check).

35

http://code.google.com/p/s3ql/issues/detail?id=267
http://code.google.com/p/s3ql/issues/detail?id=159

S3QL Documentation, Release 1.9

Unfortunately, there is no way to handle insufficient space in the backend without leaving the file system incon-
sistent. Since S3QL first writes data into the cache, it can no longer return an error when it later turns out that
the cache can not be committed to the backend.

36 Chapter 13. Known Issues

CHAPTER

FOURTEEN

MANPAGES

The man pages are installed with S3QL on your system and can be viewed with the man command. For reference,
they are also included here in the User’s Guide.

14.1 The mkfs.s3ql command

14.1.1 Synopsis

mkfs.s3ql [options] <storage url>

14.1.2 Description

The mkfs.s3ql command creates a new file system in the location specified by storage url. The storage url depends on
the backend that is used. The S3QL User’s Guide should be consulted for a description of the available backends.

Unless you have specified the --plain option, mkfs.s3ql will ask you to enter an encryption password. This
password will not be read from an authentication file specified with the --authfile option to prevent accidental
creation of an encrypted bucket.

14.1.3 Options

The mkfs.s3ql command accepts the following options.

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug <module> activate debugging output from <module>. Use all to get debug
messages from all modules. This option can be specified multiple
times.

--quiet be really quiet

--version just print program version and exit

-L <name> Filesystem label

--max-obj-size <size> Maximum size of storage objects in KB. Files bigger than this will
be spread over multiple objects in the storage backend. Default:
10240 KB.

37

S3QL Documentation, Release 1.9

--plain Create unencrypted file system.

--force Overwrite any existing data.

14.1.4 Exit Status

mkfs.s3ql returns exit code 0 if the operation succeeded and 1 if some error occured.

14.1.5 See Also

The S3QL homepage is at http://code.google.com/p/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, conventional locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

14.2 The s3qladm command

14.2.1 Synopsis

s3qladm [options] <action> <storage url>

where action may be either of passphrase, upgrade, delete or download-metadata.

14.2.2 Description

The s3qladm command performs various operations on S3QL buckets. The file system contained in the bucket must
not be mounted when using s3qladm or things will go wrong badly.

The storage url depends on the backend that is used. The S3QL User’s Guide should be consulted for a description of
the available backends.

14.2.3 Options

The s3qladm command accepts the following options.

--debug <module> activate debugging output from <module>. Use all to get debug
messages from all modules. This option can be specified multiple
times.

--quiet be really quiet

--log <target> Write logging info into this file. File will be rotated when it reaches
1 MB, and at most 5 old log files will be kept. Specify none to
disable logging. Default: none

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--version just print program version and exit

Hint: run s3qladm <action> --help to get help on the additional arguments that the different actions take.

38 Chapter 14. Manpages

http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

14.2.4 Actions

The following actions may be specified:

passphrase Changes the encryption passphrase of the bucket.

upgrade Upgrade the file system contained in the bucket to the newest revision.

delete Delete the bucket and all its contents.

download-metadata Interactively download backups of the file system metadata.

14.2.5 Exit Status

s3qladm returns exit code 0 if the operation succeeded and 1 if some error occured.

14.2.6 See Also

The S3QL homepage is at http://code.google.com/p/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, conventional locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

14.3 The mount.s3ql command

14.3.1 Synopsis

mount.s3ql [options] <storage url> <mount point>

14.3.2 Description

The mount.s3ql command mounts the S3QL file system stored in storage url in the directory mount point. The storage
url depends on the backend that is used. The S3QL User’s Guide should be consulted for a description of the available
backends.

14.3.3 Options

The mount.s3ql command accepts the following options.

--log <target> Write logging info into this file. File will be rotated when it reaches
1 MB, and at most 5 old log files will be kept. Specify none to
disable logging. Default: ~/.s3ql/mount.log

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug <module> activate debugging output from <module>. Use all to get debug
messages from all modules. This option can be specified multiple
times.

--quiet be really quiet

14.3. The mount.s3ql command 39

http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

--version just print program version and exit

--cachesize <size> Cache size in kb (default: 102400 (100 MB)). Should be at least 10
times the maximum object size of the filesystem, otherwise an object
may be retrieved and written several times during a single write() or
read() operation.

--max-cache-entries <num> Maximum number of entries in cache (default: 768). Each
cache entry requires one file descriptor, so if you increase this num-
ber you have to make sure that your process file descriptor limit (as
set with ulimit -n) is high enough (at least the number of cache
entries + 100).

--min-obj-size <size> Minimum size of storage objects in KB. Files smaller than this may
be combined into groups that are stored as single objects in the stor-
age backend. Default: 512 KB.

--allow-other Normally, only the user who called mount.s3ql can access the
mount point. This user then also has full access to it, independent of
individual file permissions. If the --allow-other option is spec-
ified, other users can access the mount point as well and individual
file permissions are taken into account for all users.

--allow-root Like --allow-other, but restrict access to the mounting user and
the root user.

--fg Do not daemonize, stay in foreground

--single Run in single threaded mode. If you don’t understand this, then you
don’t need it.

--upstart Stay in foreground and raise SIGSTOP once mountpoint is up.

--profile Create profiling information. If you don’t understand this, then you
don’t need it.

--compress <name> Compression algorithm to use when storing new data. Allowed val-
ues: lzma, bzip2, zlib, none. (default: lzma)

--metadata-upload-interval <seconds> Interval in seconds between complete metadata
uploads. Set to 0 to disable. Default: 24h.

--threads <no> Number of parallel upload threads to use (default: auto).

--nfs Support export of S3QL file systems over NFS (default: False)

14.3.4 Exit Status

mount.s3ql returns exit code 0 if the operation succeeded and 1 if some error occured.

14.3.5 See Also

The S3QL homepage is at http://code.google.com/p/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, conventional locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

40 Chapter 14. Manpages

http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

14.4 The s3qlstat command

14.4.1 Synopsis

s3qlstat [options] <mountpoint>

14.4.2 Description

The s3qlstat command prints statistics about the S3QL file system mounted at mountpoint.

s3qlstat can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user. This limitation might be removed in the future (see issue
155).

14.4.3 Options

The s3qlstat command accepts the following options:

--debug activate debugging output

--quiet be really quiet

--version just print program version and exit

14.4.4 Exit Status

s3qlstat returns exit code 0 if the operation succeeded and 1 if some error occured.

14.4.5 See Also

The S3QL homepage is at http://code.google.com/p/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, conventional locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

14.5 The s3qlctrl command

14.5.1 Synopsis

s3qlctrl [options] <action> <mountpoint> ...

where action may be either of flushcache, upload-meta, cachesize or log-metadata.

14.5.2 Description

The s3qlctrl command performs various actions on the S3QL file system mounted in mountpoint.

s3qlctrl can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user. This limitation might be removed in the future (see issue
155).

14.4. The s3qlstat command 41

http://code.google.com/p/s3ql/issues/detail?id=155
http://code.google.com/p/s3ql/issues/detail?id=155
http://code.google.com/p/s3ql/
http://code.google.com/p/s3ql/issues/detail?id=155
http://code.google.com/p/s3ql/issues/detail?id=155

S3QL Documentation, Release 1.9

The following actions may be specified:

flushcache Uploads all changed file data to the backend.

upload-meta Upload metadata to the backend. All file system operations will block while a snapshot of the metadata
is prepared for upload.

cachesize Changes the cache size of the file system. This action requires an additional argument that specifies the
new cache size in kB, so the complete command line is:

s3qlctrl [options] cachesize <mountpoint> <new-cache-size>

log Change the amount of information that is logged into ~/.s3ql/mount.log file. The complete syntax is:

s3qlctrl [options] log <mountpoint> <level> [<module> [<module> ...]]

here level is the desired new log level and may be either of debug, info or warn. One or more module may
only be specified with the debug level and allow to restrict the debug output to just the listed modules.

14.5.3 Options

The s3qlctrl command also accepts the following options, no matter what specific action is being invoked:

--debug activate debugging output

--quiet be really quiet

--version just print program version and exit

Hint: run s3qlctrl <action> --help to get help on the additional arguments that the different actions take.

14.5.4 Exit Status

s3qlctrl returns exit code 0 if the operation succeeded and 1 if some error occured.

14.5.5 See Also

The S3QL homepage is at http://code.google.com/p/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, conventional locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

14.6 The s3qlcp command

14.6.1 Synopsis

s3qlcp [options] <source-dir> <dest-dir>

14.6.2 Description

The s3qlcp command duplicates the directory tree source-dir into dest-dir without physically copying the file
contents. Both source and destination must lie inside the same S3QL file system.

42 Chapter 14. Manpages

http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

The replication will not take any additional space. Only if one of directories is modified later on, the modified data
will take additional storage space.

s3qlcp can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user. This limitation might be removed in the future (see issue
155).

Note that:

• After the replication, both source and target directory will still be completely ordinary directories. You can
regard <src> as a snapshot of <target> or vice versa. However, the most common usage of s3qlcp is
to regularly duplicate the same source directory, say documents, to different target directories. For a e.g.
monthly replication, the target directories would typically be named something like documents_January
for the replication in January, documents_February for the replication in February etc. In this case it is
clear that the target directories should be regarded as snapshots of the source directory.

• Exactly the same effect could be achieved by an ordinary copy program like cp -a. However, this procedure
would be orders of magnitude slower, because cp would have to read every file completely (so that S3QL had
to fetch all the data over the network from the backend) before writing them into the destination folder.

Snapshotting vs Hardlinking

Snapshot support in S3QL is inspired by the hardlinking feature that is offered by programs like rsync or storeBackup.
These programs can create a hardlink instead of copying a file if an identical file already exists in the backup. However,
using hardlinks has two large disadvantages:

• backups and restores always have to be made with a special program that takes care of the hardlinking. The
backup must not be touched by any other programs (they may make changes that inadvertently affect other
hardlinked files)

• special care needs to be taken to handle files which are already hardlinked (the restore program needs to know
that the hardlink was not just introduced by the backup program to safe space)

S3QL snapshots do not have these problems, and they can be used with any backup program.

14.6.3 Options

The s3qlcp command accepts the following options:

--debug activate debugging output

--quiet be really quiet

--version just print program version and exit

14.6.4 Exit Status

s3qlcp returns exit code 0 if the operation succeeded and 1 if some error occured.

14.6.5 See Also

The S3QL homepage is at http://code.google.com/p/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, conventional locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

14.6. The s3qlcp command 43

http://code.google.com/p/s3ql/issues/detail?id=155
http://code.google.com/p/s3ql/issues/detail?id=155
http://www.samba.org/rsync
http://savannah.nongnu.org/projects/storebackup
http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

14.7 The s3qlrm command

14.7.1 Synopsis

s3qlrm [options] <directory>

14.7.2 Description

The s3qlrm command recursively deletes files and directories on an S3QL file system. Although s3qlrm is faster than
using e.g. rm -r‘, the main reason for its existence is that it allows you to delete immutable trees (which can be created
with s3qllock) as well.

Be warned that there is no additional confirmation. The directory will be removed entirely and immediately.

s3qlrm can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user. This limitation might be removed in the future (see issue
155).

14.7.3 Options

The s3qlrm command accepts the following options:

--debug activate debugging output

--quiet be really quiet

--version just print program version and exit

14.7.4 Exit Status

s3qlrm returns exit code 0 if the operation succeeded and 1 if some error occured.

14.7.5 See Also

The S3QL homepage is at http://code.google.com/p/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, conventional locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

14.8 The s3qllock command

14.8.1 Synopsis

s3qllock [options] <directory>

44 Chapter 14. Manpages

http://code.google.com/p/s3ql/issues/detail?id=155
http://code.google.com/p/s3ql/issues/detail?id=155
http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

14.8.2 Description

The s3qllock command makes a directory tree in an S3QL file system immutable. Immutable trees can no longer be
changed in any way whatsoever. You can not add new files or directories and you can not change or delete existing
files and directories. The only way to get rid of an immutable tree is to use the s3qlrm command.

s3qllock can only be called by the user that mounted the file system and (if the file system was mounted with
--allow-other or --allow-root) the root user. This limitation might be removed in the future (see issue
155).

14.8.3 Rationale

Immutability is a feature designed for backups. Traditionally, backups have been made on external tape drives. Once
a backup was made, the tape drive was removed and locked somewhere in a shelf. This has the great advantage that
the contents of the backup are now permanently fixed. Nothing (short of physical destruction) can change or delete
files in the backup.

In contrast, when backing up into an online storage system like S3QL, all backups are available every time the file
system is mounted. Nothing prevents a file in an old backup from being changed again later on. In the worst case, this
may make your entire backup system worthless. Imagine that your system gets infected by a nasty virus that simply
deletes all files it can find – if the virus is active while the backup file system is mounted, the virus will destroy all
your old backups as well!

Even if the possibility of a malicious virus or trojan horse is excluded, being able to change a backup after it has been
made is generally not a good idea. A common S3QL use case is to keep the file system mounted at all times and
periodically create backups with rsync -a. This allows every user to recover her files from a backup without having to
call the system administrator. However, this also allows every user to accidentally change or delete files in one of the
old backups.

Making a backup immutable protects you against all these problems. Unless you happen to run into a virus that was
specifically programmed to attack S3QL file systems, backups can be neither deleted nor changed after they have been
made immutable.

14.8.4 Options

The s3qllock command accepts the following options:

--debug activate debugging output

--quiet be really quiet

--version just print program version and exit

14.8.5 Exit Status

s3qllock returns exit code 0 if the operation succeeded and 1 if some error occured.

14.8.6 See Also

The S3QL homepage is at http://code.google.com/p/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, conventional locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

14.8. The s3qllock command 45

http://code.google.com/p/s3ql/issues/detail?id=155
http://code.google.com/p/s3ql/issues/detail?id=155
http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

14.9 The umount.s3ql command

14.9.1 Synopsis

umount.s3ql [options] <mount point>

14.9.2 Description

The umount.s3ql command unmounts the S3QL file system mounted in the directory mount point and blocks until all
data has been uploaded to the storage backend.

Only the user who mounted the file system with mount.s3ql is able to unmount it with umount.s3ql. If you are root
and want to unmount an S3QL file system mounted by an ordinary user, you have to use the fusermount -u or umount
command instead. Note that these commands do not block until all data has been uploaded, so if you use them instead
of umount.s3ql then you should manually wait for the mount.s3ql process to terminate before shutting down the
system.

14.9.3 Options

The umount.s3ql command accepts the following options.

--debug activate debugging output

--quiet be really quiet

--version just print program version and exit

--lazy, -z Lazy umount. Detaches the file system immediately, even if there are
still open files. The data will be uploaded in the background once all
open files have been closed.

14.9.4 Exit Status

umount.s3ql returns exit code 0 if the operation succeeded and 1 if some error occured.

14.9.5 See Also

The S3QL homepage is at http://code.google.com/p/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, conventional locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

14.10 The fsck.s3ql command

14.10.1 Synopsis

fsck.s3ql [options] <storage url>

46 Chapter 14. Manpages

http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

14.10.2 Description

The mkfs.s3ql command checks the new file system in the location specified by storage url for errors and attempts to
repair any problems. The storage url depends on the backend that is used. The S3QL User’s Guide should be consulted
for a description of the available backends.

14.10.3 Options

The mkfs.s3ql command accepts the following options.

--log <target> Write logging info into this file. File will be rotated when it reaches
1 MB, and at most 5 old log files will be kept. Specify none to
disable logging. Default: ~/.s3ql/fsck.log

--cachedir <path> Store cached data in this directory (default: ~/.s3ql)

--authfile <path> Read authentication credentials from this file (default:
~/.s3ql/authinfo2)

--debug <module> activate debugging output from <module>. Use all to get debug
messages from all modules. This option can be specified multiple
times.

--quiet be really quiet

--version just print program version and exit

--batch If user input is required, exit without prompting.

--force Force checking even if file system is marked clean.

14.10.4 Exit Status

mkfs.s3ql returns exit code 0 if the operation succeeded and 1 if some error occured.

14.10.5 See Also

The S3QL homepage is at http://code.google.com/p/s3ql/.

The full S3QL documentation should also be installed somewhere on your system, conventional locations are
/usr/share/doc/s3ql or /usr/local/doc/s3ql.

14.11 The pcp command

14.11.1 Synopsis

pcp [options] <source> [<source> ...] <destination>

14.11. The pcp command 47

http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

14.11.2 Description

The pcp command is a is a wrapper that starts several sync processes to copy directory trees in parallel. This is allows
much better copying performance on file system that have relatively high latency when retrieving individual files like
S3QL.

Note: Using this program only improves performance when copying from an S3QL file system. When copying to an
S3QL file system, using pcp is more likely to decrease performance.

14.11.3 Options

The pcp command accepts the following options:

--quiet be really quiet

--debug activate debugging output

--version just print program version and exit

-a Pass -aHAX option to rsync.

--processes <no> Number of rsync processes to use (default: 10).

14.11.4 Exit Status

pcp returns exit code 0 if the operation succeeded and 1 if some error occured.

14.11.5 See Also

pcp is shipped as part of S3QL, http://code.google.com/p/s3ql/.

14.12 The expire_backups command

14.12.1 Synopsis

expire_backups [options] <age> [<age> ...]

14.12.2 Description

The expire_backups command intelligently remove old backups that are no longer needed.

To define what backups you want to keep for how long, you define a number of age ranges. expire_backups ensures
that you will have at least one backup in each age range at all times. It will keep exactly as many backups as are
required for that and delete any backups that become redundant.

Age ranges are specified by giving a list of range boundaries in terms of backup cycles. Every time you create a new
backup, the existing backups age by one cycle.

Example: when expire_backups is called with the age range definition 1 3 7 14 31, it will guarantee that you
always have the following backups available:

1. A backup that is 0 to 1 cycles old (i.e, the most recent backup)

2. A backup that is 1 to 3 cycles old

48 Chapter 14. Manpages

http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

3. A backup that is 3 to 7 cycles old

4. A backup that is 7 to 14 cycles old

5. A backup that is 14 to 31 cycles old

Note: If you do backups in fixed intervals, then one cycle will be equivalent to the backup interval. The advantage of
specifying the age ranges in terms of backup cycles rather than days or weeks is that it allows you to gracefully handle
irregular backup intervals. Imagine that for some reason you do not turn on your computer for one month. Now all
your backups are at least a month old, and if you had specified the above backup strategy in terms of absolute ages,
they would all be deleted! Specifying age ranges in terms of backup cycles avoids these sort of problems.

expire_backups usage is simple. It requires backups to have names of the forms
year-month-day_hour:minute:seconds (YYYY-MM-DD_HH:mm:ss) and works on all backups in
the current directory. So for the above backup strategy, the correct invocation would be:

expire_backups.py 1 3 7 14 31

When storing your backups on an S3QL file system, you probably want to specify the --use-s3qlrm option as
well. This tells expire_backups to use the s3qlrm command to delete directories.

expire_backups uses a “state file” to keep track which backups are how many cycles old (since this cannot be inferred
from the dates contained in the directory names). The standard name for this state file is .expire_backups.dat.
If this file gets damaged or deleted, expire_backups no longer knows the ages of the backups and refuses to work.
In this case you can use the --reconstruct-state option to try to reconstruct the state from the backup dates.
However, the accuracy of this reconstruction depends strongly on how rigorous you have been with making backups (it
is only completely correct if the time between subsequent backups has always been exactly the same), so it’s generally
a good idea not to tamper with the state file.

14.12.3 Options

The expire_backups command accepts the following options:

--quiet be really quiet

--debug activate debugging output

--version just print program version and exit

--state <file> File to save state information in (default: ”.expire_backups.dat”)

-n Dry run. Just show which backups would be deleted.

--reconstruct-state Try to reconstruct a missing state file from backup dates.

--use-s3qlrm Use s3qlrm command to delete backups.

14.12.4 Exit Status

expire_backups returns exit code 0 if the operation succeeded and 1 if some error occured.

14.12.5 See Also

expire_backups is shipped as part of S3QL, http://code.google.com/p/s3ql/.

14.12. The expire_backups command 49

http://code.google.com/p/s3ql/

S3QL Documentation, Release 1.9

50 Chapter 14. Manpages

CHAPTER

FIFTEEN

FURTHER RESOURCES / GETTING
HELP

If you have questions or problems with S3QL that you weren’t able to resolve with this manual, you might want to
consider the following other resources:

• The S3QL Wiki

• The S3QL FAQ

• The S3QL Mailing List. You can subscribe by sending a mail to s3ql+subscribe@googlegroups.com.

Please report any bugs you may encounter in the Issue Tracker.

51

http://code.google.com/p/s3ql/w/list
http://code.google.com/p/s3ql/wiki/FAQ
http://groups.google.com/group/s3ql
mailto:s3ql+subscribe@googlegroups.com
http://code.google.com/p/s3ql/issues/list

	About S3QL
	Features
	Development Status

	Installation
	Dependencies
	Installing S3QL

	General Information
	Terminology
	Storing Authentication Information
	On Backend Reliability

	Storage Backends
	Google Storage
	Amazon S3
	OpenStack/Swift
	RackSpace CloudFiles
	S3 compatible
	Local
	SSH/SFTP

	File System Creation
	Managing Buckets
	Changing the Passphrase
	Upgrading the file system
	Deleting a file system
	Restoring Metadata Backups

	Mounting
	Compression Algorithms
	Notes about Caching
	Automatic Mounting

	Advanced S3QL Features
	Snapshotting and Copy-on-Write
	Getting Statistics
	Immutable Trees
	Fast Recursive Removal
	Runtime Configuration

	Unmounting
	Checking for Errors
	Contributed Programs
	benchmark.py
	s3_copy.py
	pcp.py
	s3_backup.sh
	expire_backups.py
	s3ql_upstart.conf

	Tips & Tricks
	SSH Backend
	Permanently mounted backup file system
	Improving copy performance

	Known Issues
	Manpages
	The mkfs.s3ql command
	The s3qladm command
	The mount.s3ql command
	The s3qlstat command
	The s3qlctrl command
	The s3qlcp command
	The s3qlrm command
	The s3qllock command
	The umount.s3ql command
	The fsck.s3ql command
	The pcp command
	The expire_backups command

	Further Resources / Getting Help

